学年

教科

質問の種類

数学 高校生

確率の問題です。 自分はPを使わずに計算しようとしたのですが、私の解答の(ⅲ)(ⅳ)で参考書の答えと違っていました。 自分の式はどこから間違っているか教えてほしいです🙇

例題 190 同じものを含む順列と確率 1 確率の基本性質 383 **** T, 0, H, O, K, U, A, 0, B, A の 10 文字から何文字か取り出し, 横1列に並べるとき, 次の確率を求めよ. (1) 10 文字を横1列に並べるとき,どの2つの0も隣り合わない確率 (2)10文字の中から6文字を1列に並べるとき,どの2つの0も隣り合 わない確率 考え方 確率を考えるときは, 0, 02, 03, A1, A2 として, すべて異なるものとして考える (同様の確からしさ). 解答 (1) T, 01, H, Oz, K, U, A1, 03, B, A2の10個を 1列に並べる並べ方は, 10! 通り どの2つの0も隣り合わない並べ方は,まず0を除 いた7文字を並べ、 さらに7文字の間と両端の8箇所 から3箇所を選んでO1, Oz, 03 を並べるときで, 7!×gP3 (通り) 計算しない. 確率なので, あとで 約分する. 7!×P3. 7!×8・7・6 よって,どの2つの0も隣り合わない確率は, 7 10! 10・9・8×7! 15 (2)10文字の中から6文字を1列に並べる並べ方は, 10P6通り (i) 6 文字のうち0が3つのとき P3×4P3 (通り) (i) 6文字のうち0が2つのとき P4×32×5P2 (通り) (ii) 6文字のうち0が1つのとき 7P5X3C1×6P1 (5) (iv) 6文字のうち0が含まれないとき P6通り よって, (i)~(iv)より, 求める確率は, P3×4P3+ P4×32×5P2+P5×3C1×6P1+P6 ^ ^ ^ ^ ^ ^ ^ ^ 7!X&P3 約分しやすく工夫す る。 0の数によって順列 の総数が異なるため、 場合分けして考える. ☐ ☐ ☐ ^ ^ ^ ^ 7P3×4P3 ^ ^ ^ ^ ^ 7P4X3C2X5P2 ↑ 01 02 03 のうち, どの0を選ぶか. 7 10 10P6 Focus 確率を考えるときは、 同じものも区別する (同様の確からしさ) 第7章

解決済み 回答数: 1
数学 高校生

画像の青線部分なのですが、どうして最後の式に辿り着くのかわかりません

m 5-4 (ii) 思考力・判断力 道しるべ (C) 200- 数が連続するカードの組を含まないような4枚の カードの取り出し方を考える. 取り出した4枚のカードの中に,数が連続するカードの 組が少なくとも1組含まれるような取り出し方は, カード の取り出し方の総数から,数が連続するカードの組を含ま ないような4枚のカードの取り出し方を引いたものであ る. 数が連続する組を含む場合 は, 4枚連続する組を含む, 3枚のみ連続する組を含む, 2枚のみ連続する組を1組だ け含む, ・4枚連続する組は含まれず, 2枚のみ連続する組を 2 組含 そこで,数が連続するカードの組を含まないような4枚のいずれかである。これらの総 のカードの取り出し方を考える。 ~35) 和を直接求めるのは大変である から,その補集合である 「数が 連続するカードの組を含まな い」ような4枚のカードの取り まず, x<y を満たす整数x,yに対して、出し方を考える x <y<y+1 210 であり,xとyが連続する2整数であっても,xとy+1 は連続しない . 同様にして, x<y<z<w (C) を満たす整数x, y, z, w に対して, x<y+1<z+2 <w+3 であり, xとy+ 1, y +1 と z +2, z+2とw+3は連 続しない。 <- (たとえば, よって, 数が連続するカードの組を含まないような4枚}(x,y,z,20)=(1, 2, 9, 10) のとき, のカードの取り出し方は, (x, y+1,z+2,w+3)=(1,3,11,13) となるから、取り出した4枚は, ♡ ♡ 1≦x<y+1<z+2<w+3≦ を満たす整数x, y +1, z+2, w+3 の組 (x, y+1,z+2, w+3) の個数, すなわち、 1≦x<y<z<w≦10 を満たす整数x,y,z, wの組 (x,y,z, w)の個数に等し い。 このような組合せは、1から10までの異なる10個の 整数から4個の整数を取り出して, 小さい順にx,y,z, 01S=(3) wに当てはめればよいから, 取り出し方は, A 3 J K となり,数が連続したカードの 組を含まないOS 10.9.8.7 10C4= 4・3・2・1 =210(通り).

未解決 回答数: 1