学年

教科

質問の種類

物理 高校生

問9で、sinθ=√3/4なのは何故ですか?

例題 2 屈折波の波面 図のように,平面波が境界面に達した。 屈折 波の波面を作図せよ。 ただし, 媒質 I に対す る媒質ⅡIの屈折率を2 とする。 2 (+式 (9)) から, 01=n12=2 V₂² V₁ T 境界面 -= 1212 V₁ 指針 屈折の法則 -=n1z(p.152・式(9))から, 媒質ⅡIにおける波の速さが,媒質 V2 Iにおける速さの何倍になるかを求める。 ホイヘンスの原理にもとづいて素元波を描 き, 屈折波の波面を作図する。 解 媒質 I, I における波の速さをそれぞれ v1, v2 とすると, ma 逆の屈折る V₁ V2 V2 であり、媒質 Ⅱ における波の速さは, 媒質 Ⅰ における速さの1/12/2になる。図のように,B2 からAB におろした垂線とA,B との交点 B2C の素元波 (半 をCとして, B, から半径 円) を描く。 このとき, B2 からこの素元波に 2 引いた接線が, B2 を通る屈折波の波面となる。他の波面は,入射波の波面と境界面の『 交点から,この接線に平行な線を引くことで求められる。 B1 B2C 2 B2 入射波 の波面 媒質 Ⅰ A2 媒質 ⅡI] 屈折波 の波面 入射波 の波面 媒質 Ⅰ 媒質 Ⅱ 問9 類題例題2で,入射波の波面と境界面のなす角を60° とする。このときの屈折角 を0として,sin0 の値を求めよ。答えは分数のままでよく, ルートをつけたままでよい。 8 平面波 障害物に を送ると, にまわりこ 回折は, 部分にも すき間 (a))。 した る (図 波長よ の

回答募集中 回答数: 0
化学 高校生

共テ模試問題なのですが、何を言っているのかさっぱりなので教えてください。

(最密充填層) 問5 金 Au の結晶は面心立方格子であり, Au 原子が最出に が積み重なった構造 (最密構造)をとっている。 そこで, 厚さ(cm) の金箔は Au 原子の最密充填層が何層積み重なっているかを考察することにした。 文献を調べてみると、Au 原子の半程から、整備奮質層が何層積み重なってい いるかを求められることがわかった。そこで、最密構造と面心立方格子についてい 得られた情報をまとめてみた。 最密構造の1層目の最密充填層(これをA層とする) では,各原子が周囲6 個の原子と接している(図3ア)。2層目の最密充填層(これをB層とする)では、 原子はA層の3個の原子がつくるすき間 X の位置に入る (図3)。 面心立方 格子では,さらにA層のすき間Yの真上の位置に3層目の最密充填層(これを C層とする)の原子が入る(図3ウ)。 面心立方格子は,これら3つの最密充填 層がA層→B層→C層→A層→B層→C層→A層……のように繰り 返すことで,原子が積み重なってできている (図3エ )。 ☆ De- A層の原子 ア B層の原子 C層の原子 イ ウ 図3 面心立方格子における原子の積み重なり方 -94- I A層 C層 B層 A層 C層 B層 A層 図4才は, A層→B層→C層→A層の4層から一部の原子を取り出した のであり, これを斜めから見ると図4カのように立方体になっていることが 化学 わかる。図4キは、この立方体における原子の配置を示したもので1層目(A 層)の原子Aの中心とその真上の4層目(A層) の原子 A2の中心を結ぶ線が立 方体の対角線になっている。 図4クは原子 Ai, B1,B2, Ci, C2, Azの中心を 通る断面の図である。 B1 A1 ① B2 √6 キ 3 オ AM C層 B層 A層 A2 ++ 図4 面心立方格子の単位格子 a B1 /6 A1 2 すで 以上の情報から, Au 原子の半径をx(cm) とすると, 厚さ(cm)の金箔は, Au 原子の最密充填層が何層積み重なってできていると考えられるか。 層の数を 表す式として最も適当なものを、次の①~④のうちから一つ選べ。ただし,αの 値は,の値に比べてきわめて大きいものとする。 6 層 カ - 95- a 2√6 3 Ü Y B2 ク A2 C 2 2r

未解決 回答数: 1
数学 高校生

38.2 正しい解き方も理解できたのですが、 自分の間違った解き方のどこが間違っているのかわかりません。また自分の考え方としては、最初12個の中から1つ選ぶ(12通り)、一つ目に例えばA1を引くと1以外を引く必要があるので9通り。2つ目にB2を引くとすると残りは3の札3枚と... 続きを読む

360 00000 ... 基本例題 38 確率の計算 (3) ・・・ 組合せの利用 | 赤, 青, 黄の札が4枚ずつあり, どの色の札にも1から4までの番号が1つずつ 書かれている。この12枚の札から無作為に3枚取り出したとき,次のことが起 105 こる確率を求めよ。 (AU (1) 全部同じ色になる。 (2) 番号が全部異なる。 指針 場合の総数Nは, 全12枚の札から3枚を選ぶ 組合せ で 12C3通り (1)~(3) の各事象が起こる場合の数 α は, 次のようにして求める。 (1)(同じ色の選び方) × (番号の取り出し方)の法則 ... (2) (異なる3つの番号の取り出し方) × (色の選び方) ・・・ 同色でもよい。 (3) (異なる3つの番号の取り出し方) (3つの番号の色の選び方) 取り出した3つの番号を小さい順に並べ, それに対し, 3色を順に対 応させる,と考えると, 取り出した番号1組について, 色の対応が 3P3通りある。 解答 12枚の札から3枚の札を取り出す方法は 2C3通り C通り 4C3 通り (1) 赤,青, 黄のどの色が同じになるかが その色について,どの番号を取り出すかが 3C1×4C3_3×4 3 ゆえに、求める確率は 12C3 220 55 (2)どの3つの番号を取り出すかが 4C3通り そのおのおのに対して, 色の選び方は3通りずつあるから, 番号が全部異なる場合は 4C3×33 通り 4C3×33 12C3 220 4×27 27 練習 (3) 3 38 枚の札を選ぶとき ゆえに, 求める確率は 55 (3)どの3つの番号を取り出すかが 4 C3通りあり, 取り出した 3つの番号の色の選び方が 3P 3通りあるから、色も番号も全 部異なる場合は 4C3×3 P3 通り ゆえに, 求める確率は 4C3X3P3 4×6 12C3 220 [埼玉医大) (3) 色も番号も全部異なる。 p.356 基本事項 = 6 55 123 赤青 赤黄 青 赤 青黄 青黄赤青赤 黄赤青 黄青赤 P通 検討 (1)札を選ぶ順序にも注目し、 N=12P3=12C3×3!, a = 3C1×4C3×3! と考える と a 3C1X4C3 となり、 12C3 左の解答の式と一致する。 3つの番号それぞれに対し、 3つずつ色が選べるから 3×3×3=33 043 0$ 赤,青,黄の3色に対し、 1,2,3,4から3つの数を 選んで対応させる,と考え て, 1×,P3通りとしてもよ い。 1組のトランプの絵札 (ジャック, クイーン, キング) 合計12枚の中から任意に Joe (1) スペード, ハート, ダイヤ, クラブの4種類の札が選ばれる確率を求めよ。 CLON (2) ジャック, クイーン,キングの札が選ばれる確率を求めよ。 (3) スペード, ハート, ダイヤ, クラブの4種類の札が選ばれ,かつジャック, ク イーン, キングの札が選ばれる確率を求めよ。 [北海学園大] 20

未解決 回答数: 0
物理 高校生

Q1' Q2'の出し方を教えていただきたいです

問題 90 電気量保存の法則 ② 次の文中の空欄にあてはまる式を記せ。 図のように、電圧V[V] の電池 E1 と E2, 電 気容量 C〔F〕 のコンデンサー C1 と C2, および スイッチS と S2を接続する。 はじめ, スイ ニッチは開いた状態であり、コンデンサーは電 荷を蓄えていないものとして、次の操作 Ⅰ か らⅢを順に行う。 a2 S2 , b2 E1E2 C₁ Si bi 18 物理 C₂ 操作Ⅰ スイッチ S1 を a1, スイッチS2をa2 に順に接続した。 コンデンサー C] の右側の極板に蓄えられる電荷は, Q (1) 〔C〕である。 = 操作Ⅱ スイッチ Si を bi, スイッチ S2 をb2に順に接続した。 このとき、コ ンデンサーCの右側の極板および C2の左側の極板に蓄えられている電 荷をそれぞれ Q1 Q2 とすると,Q=Q1+Q2 である。 一方, キルヒホッ フの第二法則より、VをQ1. Q2, C で表すと, V= (2) 〔V〕である。 Q Q2をCVを用いて表すと, Q1 = (3) (C), Q2 (4) 〔C〕である。 操作Ⅲ スイッチ S1 を a1, スイッチS2をa2 に順に接続したあと, スイッチ S1 を b1, スイッチ S2をb2に順に接続した。 コンデンサー C」 の右側の極板 に蓄えられている電荷をC, Vを用いて表すと. (5) (C) であり、コン デンサーC2の左側の極板に蓄えられている電荷をC, V を用いて表すと, (6) 〔C〕である。 〈愛媛大〉

回答募集中 回答数: 0
数学 高校生

(ⅲ)の解説の前半の下から2行目「ただ一つだけ存在する」の意味がよく分からないのでどういうことか説明して頂きたいです💦

21 辺の長さの変化と三角比 (1) BC=2√/3 のとき、 △ABCにおいて, 余弦定理により (2√3)=AB2+4²-2・AB・4cos60° AB-4AB+4=0 (AB-2)² = 0 よって AB = '2 この AB+BC" = ACA が成り立つから、△ABCは∠B=90°の直角三角形 (①) である。1 (ii) BC=4 のとき, AC=BC=4 であるから △ABCは∠Cを頂角 とする二等辺三角形である。 よって, 底角は等しく∠A=∠B=60° である。このとき, ∠C=180° ∠A-∠B=60° である。 △ABC はすべての内角が 60° であるから, AB=BC=CA=4 の正三角 形 (⑩) である。 ( BC=2√3 のときと, BC4 のときを図示すると図1のように なる。 BCの長さをaとする。 2√3より大きく4より小さい値を考え, 点Cを中心として半径aの円をかくと, 図2のように直線ℓと2点 で交わり、このとき, 合同でない △ABCが2つ存在する (△AB,C, △ABC)。 0<a<2√3 となる △ABC は存在せず,a>4となる△ABCは ただ1つだけ存在するから,2√3 <a < 4 を満たす値を考え, BC=√15 (②) が適当である。 図1 60° 2√3 x sin ∠B よって ∠ABC=180°∠ABC したがって AC BC sin ZB sin ZA 4 B A B B2 図2において, △CB1 B2 は CB1 = CB2 の二等辺三角形であるから ∠CB1 B2=∠CB2 B1 (2) △ABCにおいて, 正弦定理により 7 sin 40° よって sin <B= B sin∠ABC = sin (180°∠AB2C) = sin ∠AB2C (①) cos∠ABC=cos (180° AB2C) =-cos∠AB2C (③) Point 図2 sin 40° 7 x C 2√3 37 ←B C A 2²+2√3)=4' である。 AB: AC:BC=1:2:√3 である ことからも, 直角三角形である ことがわかる。 ingr B (C 図形と計量 sin (180°-0) = sin0 cos (180°-0) = -cos (

回答募集中 回答数: 0