学年

教科

質問の種類

数学 高校生

カッコ2番について、赤の下線をつけた部分がなぜそうなるのか分からないので教えて下さい!

〔3〕 スキー競技の「モーグル」 は, こぶのある斜面をスタート地点からゴール地点 まで滑り降りかかった時間によるタイム点, ジャンプ演技によるエア点。ターン の技術によるターン点の合計を競う競技である。 下の表は, 2017年に札幌で行われたある大会の上位16人の得点を表している。 タイム点Xは20点満点, エア点Yも20点満点, ターン点Zは60点満点で, 合 計得点 W は 100点満点である。 エア点とターン点は審判の採点によって決まり, タイム点は斜面を滑り降りるのにかかった時間T (秒) によって決まる。 順位 時間(秒) タイムX (点) エアY(点) ターン Z(点) 合計 W (点) 1 16.86 15.26 53.10 85.22 2 16.25 12.85 53.70 3 15.72 14.40 51.60 4 16.86 13.30 (51.20 5 16.04 15.41 49.70 6 15.69 13.47 50.00 7 15.49 13.60 50.00 8 16.14 10.79 (51.20 9 14.44 14.92 48.50 10 16.53 12.48 47.80 11 14.71 12.81 49.10 12 13.60 10.30 42.60 12.37 6.27 43.60 9.35 8.12 41.00 9.80 7.47 39.60 5.93 7.18 42.80 13 14 15 16 22.20 22.63 23.01 22.20 22.78 23.03 23.17 22.71 23.92 22.43 23.73 24.52 25.40 27.55 27.23 29.99 82.80 81.72 81.36 81.15 79.16 79.09 78.13 77.86 76.81 76.62 66.50 62.24 58.47 56.87 55.91 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

(3)の0は、(2)では近似値?で13と16を使っているのになぜ(3)では分母は12にしているのですか?

ヒストグラムの選択 データを合わせた平均値や分散 ②のうち、複数の合計が20であるものは②だけであるので、A の 29 難易度 ★★ べて整数) をまとめたものである。 Aテストの得点を変量x, B テストの得点を変量で表し、 てあるクラスの加入の生徒の入テストとBテストの再度 (100点満点であり、 y 100円 90 yの平均値をそれぞれで表す。 ただし、表中の数値はすべて正確な値であり, 四捨五入され、 いないものとする。 80円 70 60 50 40 30 20 [[10] 生徒番号 1 *** X 62 *** y 57 ww 47 55 1220 A 61.0 B 20 合計 平均値 中央値 (1) A=アイウ, B=エオ」 (2) 変量xと変量yの散布図はキ www [x-x (x-x)² y-ỹ (-y)² (x-x)(y-y) 169.0 13.0 13.0 1.0 1.0 -6.0 0 1020304050 60 70 80 90 100 X 0.0 0.0 1.5 62.5 42.0 カ 42.5 である。 60 100 y 90 80 70 150808010 40 *** 36.0 3064.0 153.2 30 目標解答時間 20 に当てはまるものを、次の⑩~②のうちから一つ選べ。 ① 10] 3.0 0.0 0.0 -2.0 ... 9分 9.0 5014.0 250.7 90.5 0 102030405060 70 80 90 100 XC *** -18.0 -3468.0 -173.4 -44.0 y [100 90 80 70 60 50 得点は 40 30 20 10 ② 30 A, B. た。 ただ (1) 各 スト 10 20 30 40 50 60 70 80 90 100 X (3) このデータの特徴に関する説明のうち,正しいものはクである。 クに当てはまるものを、次の⑩~②のうちから一つ選べ。 ただし, 変量xと変量yの散布 キのときとする。 図は ⑩ Bテストの得点の標準偏差はAテストの得点の標準偏差の1.5倍より大きい。 ① Aテストの得点の最頻値は62.5点である。 ② 上の20人の生徒の得点のデータに, Aテストで90点, Bテストで80点をとった生徒1人 の得点のデータを加えたとき, xとyの相関係数は増加する。 (配点10) <公式・解法集 28 30 31 33 34 C 以 (2)

回答募集中 回答数: 0