学年

教科

質問の種類

数学 高校生

214. 次に2<a<3のとき 以降がわからないです。 なぜ2<a<3のときf(α)=f(α+1)とするのですか??

332 重要 例題 214 区間に文字を含む3次関数の最大・最小 f(x)=x-6x2+9xとする。 区間 α ≦x≦a +1 におけるf(x) の最大値 M(α) を めよ。 指針 まず, y=f(x)のグラフをかく。 次に, 幅1の区間a≦x≦α+1をx軸上で左側から協 しながら, f(x) の最大値を考える。 なお、区間内でグラフが右上がりなら M (a) = f (a+1), 右下がりなら M (a)=f(a) また,区間内に極大値を与える点を含めば, M (α) = (極大値) となる。 更に,区間内に極小値を与える点を含むときは, f(α)=f(α+1) となるαとαの大小に より場合分けをして考える。 NA CHART 区間における最大・最小 極値と端の値をチェック 解答 f'(x)=3x2-12x+9 =3(x-1)(x-3) f'(x)=0 とすると 増減表から, y=f(x)のグラフは 図のようになる。 [1] a+1<1 すなわち a <0のとき M(a)=f(a+1) =(a+1)³−6(a+1)²+9(a+1) =a³-3a²+4 [2] a <1≦a+1 すなわち 0≦a <1のとき よって x=1,3f(x) a= 9+√33 6 以上から a < 0, ① [4] X f'(x) + (-9)±√(-9)-4・3・4 9±√33 2・3 6 2 <a <3であるから,5√33 <6に注意してα= [3] 1≦a< 9+√33 6 練習 ⑤ 214 めよ。 ≦αのとき 1 0 |極大 4 yA 4 0≦a <1のとき M (α)=4; 1≦a< [2] 9+√33 6 a01 a+1 M(a)=f(1)=4 次に, 2 <α<3のとき f(α)=f(α+1) とすると α3-6a²+9a=α3-3a²+4 ゆえに 3²-9a+4=0 3 0 + |極小| 20 y=f(x) | [3] [4] -1- a3a+1x のとき M(α)=f(a)=α-6a²+9a 9+√33 6 M(a)=f(a+1)=a³-3a²+4 9+√33 6 ≦aのとき M (a)=a²-3a²+4; のとき M (a)=α-6a²+9a [1] 区間の右端で最大 YA 4 /11 1 1 1 4F 基本213 1 a 01 3 Na+1 [2] (極大値) = ( 最大値) YA 4F 最大 Oa 1 3 20.01 +1 [3] 区間の左端で最大 "1 11 7 V 1/ atl 最大 7 a 31 a+1 [4] 区間の右端で最大 YA ya. /3 1 a f(x)=x-3x²9x とする。 区間 t≦x≦t+2 におけるf(x) の最小値m(t) を求

回答募集中 回答数: 0
数学 高校生

106.3 56=2^3×7だから n=p^14(pは自然数)であることはあり得ないから 15=3×5で考えるべきだ。 と頭の中で考えるのは簡単ですが 解答のようにp,qを用いて記述するのがしっくりきません。 p,qを用いない解答例(記述式)があれば教えてください。

472 基本 例題 106 約数の個数と総和 (1) 360 の正の約数の個数と,正の約数のうち偶数であるものの総和を求めよ。 (2) 慶応大] (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pag...... となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... E©**** (1+p+p²+...+pª)(1+q+q²+···+q')(1+r+r²+...+pc).….…... (1) 上のN2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2aqb.gc…..... (a≧1,b≧0,c≧0,...;q, r, ・は奇数の素数) 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 468 基本事項 と表され その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, ・・・・・ の値を決めるとよい。 des 15 を積で表すと, 15・15・3であるから, nは15-11-1または 13-1の形。 となる 解答 (1) 360=2・32・5 であるから,正の約数の個数はAVH-S- (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は ←p,g,r, ….. は素数。 pag're の正の約数の個数は (α+1)(6+1)(c+1) (p,q,r は素数) (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22・3)" = 22" ・3" であるから 12" の正の約数が 28 個 であるための条件は (2n+1)(n+1)=28 よって nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・15・3) であるから, nは 14 または pq2 (p, g は異なる素数) の形で表される。 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 たら誤り。 積の法則を利用しても求め られる (p.309 参照)。 ONT RJUUS 1=5310 A ◄(ab)"=a"b", (a")"=a™ のところを2m n とし 素数のうち、 偶数は2の みである。 15.1から p15-1g1 5.3 から -13-1 nは56の倍数であり, 56=23.7であるから、n は の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24・7=784 <p=2, g=7 練習 ② 106 (2)正の約数の個数が3で,正の約数の総和が 57 となる自然数n (3) 300以下の自然数のうち 工の数 求めよ。 (1) 756 の正の約数の個数と、 正の約数のうち奇数であるものの総和を求めよ。 n を求めよ。 重要 例 √√n² +40 指針net よって ここて を利用 このと 更に, CHART 解答 √n²+40=r 平方してn mnは自然 4の約数 また,m+n m+n m-n 解は順に( したがって, 検討 積カ 上の解答の 1つである 答えにたど また,上 の自然数の は、右の が決まるが ある。 ちな という条件 ため、組 しかし, 上 る。なお, 一致する。 更に効

回答募集中 回答数: 0
数学 高校生

106.2 記述これでも大丈夫ですか??

472 基本 例題 106 約数の個数と総和 31/ 00000 (1) 360 の正の約数の個数と、 正の約数のうち偶数であるものの総和を求めよ。 (2) 12" の正の約数の個数が28個となるような自然数n を求めよ。 [(2) 慶応大] (3) 56の倍数で, 正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pagere…..... となるとき 正の約数の個数は (a+1)(b+1)(c+1)...... EO (1+p+p²+…+pª)(1+g+q²+…+q¹)(1+r+r²+…+r²)....... 【CHART 約数の個数, 総和 素因数分解した式を利用 (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2.gº.y....... (a≧1,6≧0,c≧0, … ; g, , ... は奇数の素数) 1+ の部分がない。 と表され, その総和は (2+22+..+2°) (1+g+q²+ +q°)(1+r+y^+..+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数15を積で表し, 指数となる a, b, の値を決めるとよい。 15 を積で表すと, 15・1, 53 であるから, nは15-11-1 または'-'g3-1の形。 p.468 基本事項 ④4 ←P, 4, Y, ··· は素数。 解答 (1) 360=232.5であるから, 正の約数の個数は (3+1)(2+1)(1+1)=4・3・2=24 (個) また,正の約数のうち偶数であるものの総和は pg're の正の約数の個数は (a+1) (6+1)(c+1) (p,g,r は素数) の形で表される。 nは56の倍数であり, 56=23・7であるから, nはP2 の形 で表される。したがって, 求める自然数nは n=24.72=784 < 素数のうち, 偶数は2の みである。 (2+2+2)(1+3+3)(1+5)=14・13・6=1092 (2) 12"=(2・3)" = 22" 3" であるから 12" の正の約数が28個 (ab)"=a"b", (a")"=a" であるための条件は (2n+1)(n+1)=28 よって 2n²+3n-27=0 ゆえに (n-3) (2n+9)=0 nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15.1=5・3) であるから, nは または pq2 (p, g は異なる素数) 積の法則を利用しても求め られる (p.309 参照)。 m のところを 2nn とし たら誤り。 15・1から 15-101-1 5・3 から 3-1 の場合は起こらない。 <p=2, q=7

回答募集中 回答数: 0
数学 高校生

106.3 記述これでもいいですか?

472 基本例題106 約数の個数と総和 (①) 360 (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 p.468 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pare…・・・・・ となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... EO (1+p+p²+...+pª)(1+g+q²+···+q°)(1+r+r²+··+²) ******** (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2°•g.xc...... (a≧1,b≧0,c≧0, ...;g,r, ··· は奇数の素数 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 と表され, その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rº)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, の値を決めるとよい。 15 を積で表すと, 151 53 であるから, nは15-11-1 または5-13-1 の形。 解答 (1) 360=2.32.5であるから,正の約数の個数は (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は 00000 ←p,g,r, ….. は素数。 14 pg're の正の約数の個数は (a+1) (6+1)(c+1) (p,q,r は素数 積の法則を利用しても求め られる (p.309 参照)。 (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22-3)"=22"• 3" であるから, 12" の正の約数が28個(ab)"=a"b", (q""="" であるための条件は (2n+1)(n+1)=28 このところを2mmとし 偶数は201 みである。 よって 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・1=5・3) であるから,nは か pg²(p, g は異なる素数) または の形で表される。 nは56の倍数であり, 56=2.7であるから, nは²の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24.72=784 たら誤り。 <p=2,g=7 15-1515-11-1 5・3から D-13-1 (1) 756 の正の約数の個数と、正の約数のうち奇数であるものの総和を認めた 練習 2 106 (2) 正の約数の個数が3で,正の約数の総和が57 となる自然数nを求めよ。 (3) 300 以下の自然数のうち,正の約数が9個である数の個数を求めよ。 CP. 484 EXTO 指針 n CH 解 √n²+ 平方し m, n 40の糸 また、 解は順 したが 検討 上の 1つ 答え ま の自 は, 例え が決 ある とい ため、 しか る。 一致 10 練習 107

回答募集中 回答数: 0
数学 高校生

(2)の数列{An+1+An}はーのところで、An+1+Anという数列はどこから来たのですか?An-1+An-2はどこへ行ったのですか?

[例題] 316 場合の数と漸化式 2辺の長さが1と2の長方形と1辺の長さが2の正方形の2種類のタイル がある。 nを自然数とし, 縦2, 横nの長方形の部屋をこれらのタイルで 過不足なく敷き詰めるときの並べ方の総数を Am で表す。 (1) n ≧3のとき, An を An-1, An-2 を用いて表せ。 (2) Ann を用いて表せ。 思考プロセス 具体的に考える 例題 307 Am を敷き詰める 最初にをおくと 最初に 最初に をおくと2 をおくと An+An-1=2 (An-1+An-2) --2- -2-- An-2A-1=-(An-1-2An-2) 3 ②より, 数列{An+1 + An} は初項 A2 + A1 = 4, 公比2の等比数列であるから n Action» n を含んだ場合の数は,最初の試行で場合に分けよ 解 (1) 左端に長辺を縦にした長方形を並べるとき 残り縦2, 横 (n-1)の部分の並べ方は A-1 通り (イ) 左端に長辺を横にした長方形を並べるとき 残り縦2, 横 (n-2)の部分の並べ方は A-2 通り (ウ) 左端に正方形を並べるとき 残り縦2, 横 (n-2)の部分の並べ方は A-2 通り (ア)~ (ウ)より An=An-1+2An-2 ① (2) ① を変形すると A-1 An+1+An=4.2-1 = 2+1 ③より, 数列{An+1-2Am} は初項 A2-2A1 = 1, 公比1の等比数列であるから An+1-2An=1,(-1)"^'=(−1)"-' ④ ⑤ より 3An=2+1-(-1)^-' よって An = 1/1/12 (2711-(-1)^-1) n-2 An-2 n-2 An-2 (東京大) ← 斜線部分 も 特性方程式 x2-x-2=0 より x=-1,2 より A = 1 ①日 より Ag = 3 [練習 316 先頭車両から順に1からnまでの番号の付いた両編成の列車がある。 ただ し≧2 とする。 各車両を赤色, 青色, 黄色のいずれか1色で塗るとき, 隣 り合った車両の少なくとも一方が赤色となるような色の塗り方は何通りか。 (京都大) p.570 問題316 6 章 18 化式と数学的帰納法 547

回答募集中 回答数: 0
数学 高校生

赤丸のところがわかりません 解説お願いします

46 CONNECT 数学ⅡI 188 問題の考え方 接点の座標を(x1, y) とおき、与えられた条 件からx を求めることを考える。 [別解 2つの接点を(x1, y'1), (x 27 y'2) とおき, それぞれの接点における接線の方程式を考 える。これらの方程式が(-1, 7) を通るこ とから, 2点を通る直線の方程式を考える。 接点の座標を(x1, y) とおく。 点 (x1,y1) は円x2+y2=25上にあるから x2+y2=25 ① 接点(x,y) における接線の方程式は x1x+y=25 この直線が点(-1,7) を通るから x1+7y1=25 ①,② から x を消去して整理すると P12-7y1+12=0 1 = 3,4 =3のとき x= -4, =4のとき x=3 これを解くと ②に代入して よって、2つの接点の座標は (-4, 3), (3, 4) したがって、2つの接点を通る直線の方程式は y-3= {x-(-4)} 4-3 3+(+4) すなわち x+7y=25 別解 A (x1,y1), B (x2, y2) とすると, A, Bにお ける接線の方程式は,それぞれ x1x+y1y=25, x2x+yzy=25 それぞれ点(-1, 7) を通るから x+7y1=25 -x2+7y2=25 281 ① ......25 ここで, 直線 x+7y=25 ・・・・・・ ③ を考えると, ①, ② から,直線③は2点A, B を通る直線で ある。 よって, 直線AB の方程式は -x+7y=25 189 ■問題の考え方■■ 接点の座標を(ⅹ1, 1) とおいて接線の方程式 を考える。また、この点が円周上の点である ことから条件式が導ける。 これを用いて x1, の値を求め,接線の方程式を求める。 接点の座標を(x1, y1) とする。 点 (x1, y1) は円x2+y2=50上にあるから x2+yj² = 50 接点 (x1, 1) における接線の方程式は xx+y=50 (1) y=0のとき, 接線②は直線xキョー ではない。 よって, 接線 ② が直線 x+y=1に平名 とき, 191 よって x1 = y1 ①,③からyを消去して整理すると これを解くと x=-5,5 ③に代入して 0で X1 y1 -1 =-5のとき =5のとき よって,接線の方程式 ② と接点の座標に ようになる。 x1 接線 x+y=-10, 接点 (-5, 接線 x+y=10, 接点 (5,5) (2) y=0のとき,接線②は直線+リニー 垂直ではない。 よって,接線②が直線7x+y=-2に るとき, y=0 で よって -7x₁=Y₁ 4 ①,④ から y を消去して整理すると これを解くと x1=-1,1 ④ に代入して Y1 (1) 求める円の半径を は円の中心 (30) に等しいから x=1のとき x=1のとき |- (-7)=-1) よって 求める円 すなわち (2) 中心が直線 y= (a, 34) とおける 直線 2x+y=0 に とすると 7. i=-7 よって,接線の方程式 ② と接点の座標は、 ようになる。 問題の考え 円が直線に接する 線と中心の距離に 接線 -x+7y=50, 接点 (-1,7) 接線 x-7y=50, 接点 (1, -7) ②に移る。 よって 求める (x-a)²+(2 とおける。 この (2-a)²+( Y 190 円の中心 C (1, 2) と点P(4,3)を通る直 CPの傾きは2=2=1/23 4-1 求める接線は CP に垂直で,点 (4,3)を通る その方程式は y-3=-3(x-4) すなわち 3x+y-15=0 別解円(x-1)+(y-2)=10...... ① , 向に -1, y 軸方向に2だけ平行移動すると ① は円x2+y2 = 10 この平行移動により、円 (31) に移る。 点 (31) における円②の接線の方程式は 3x+y=10 求める接線は, ③ をx軸方向に1, y軸方向に だけ平行移動したもので, その方程式は 3(x-1)+(y-2)=10 すなわち 3.x+y-15=0 整理すると これを解いて したがって, 上の点43)は 192■問 円と直線の 方程式を を考える。 (x-1)² + [x² + y² y=m ②①に (m² + この2次方 D 4 D > 0 と m²_ D=0 と m². D<0 と m' m2 が したが- m m

回答募集中 回答数: 0