学年

教科

質問の種類

数学 高校生

図形と計量 (2) なぜ、BE=5/3になるのか分かりません。 何度計算しても、分母が3になりません。

11:54 all 4G 98 × 高1・高2トップレベル数学IAIIB + C (ベクトル) 第4講三角比といえば 目 目次 追加済み 0.75× まだ (DE+3)=Fc(2.0x) 速度 1.00x AECB QAFADay [C (FB+3)-24 2(ER+3)=4EC EB+3-2 FB+ Ec= これと 10 BEEF (+1) 2 E D BE +5 5 2 BE = BE: 3 2 B 自動 CRECRUIT 10:58 25:40 LJ 三角比といえば・・・ 44 円に内接する四角形ABCD が AB=3, BC=2,CD=1, DA=4を満たしている. また, 直線AB と直線 CD の交点をE, 直線AD と直線BCの交点をF. 線分AC と 線分 BD の交点をPとし、 三角形BCE の外接円と直線 EF の交点でE以外のものを 点 Q とする. 次の各問いに答えよ. (1)点Qは三角形 CDF の外接円上にあることを示せ (2) 線分 BD, 線分 BE, 線分 DF. 線分 EF の長さをそれぞれ求めよ. (3) 四角形ABCDの面積Sを求めよ. (4) 線分AP の長さを求めよ. (5) sin∠APB の値を求めよ. 【答】 (1) 略 (2BD= 55 7 BE E-f. DF- DF=3. EF== 2065 (3) 2√6 12 (4) 6√385 35 4√6 (5) 11 【解答】 (1) B.C. Q. Eは同一円周上より, ∠CQE=∠ABC また, A, B, C, D は同一円周上より, ∠ABC = ∠CDF よって∠CQE=∠CDF より Q. C, D. F は同一円周上にある. (2) A, B, C, Dは同一円周上より ∠BAD + ∠BCD = よって cos∠BAD+ cos∠BCD=0 + 32+42-BD2 22+12-BD2 2×3×4 2×2×1 =0 55 BD= 7 方べきの定理より. BE(BE+3)=EC(EC+1) ………① BD²= 55 △EBCと△EDA が相似であることより EC (BE+3)=2:4 5 3 BE+3=2EC これを①に代入,整理することでBE = を得る.また,EC=13 である. メネラウスの定理より 7 DF EC AB DF 3 =1 =1 . DF= AF CD BE 3+0-14, AF-4+ AE=3+ DF +4 1 5 3 COS ∠BAD= 32+42-BD^ 2×3×4 より < 戻る 次へ >

解決済み 回答数: 1
数学 高校生

(2)で、2枚目画像の右側で、 「ABは2より大きいから不適」、「ABはACより小さくなるから適する」と教えていただいたのですがこの部分がわかりません。 教えてください。

[1] αは正の定数とし, 集合Pを次のように定める。 M P={x|x²-(a-1)x-a≦0, x は整数 (1)a=4 のとき,集合Pの要素をすべて求めよ。 -1.0,123,4 (2) 集合Pの要素の個数が5個であるようなαの値の範囲を求めよ。 3≦ac4 [2] 次の太郎さんと花子さんの会話を読んで,以下の問いに答えよ。 (配点 10 ) -3-2-1 太郎:「三角比(図形と計量)」については十分勉強したよ。 問題を出してみてよ。 250 1 花子: 0 は鋭角で,sin = となるようなのは何度かな。 太郎 : 鋭角という条件があるから,0 (ア) だ 08 A 3 花子: 正解です。では, 0 は鋭角で, sin0= となるような日は何度かな。 4 太郎 正確な角度はわからないけど,0は (1) の範囲にあることがわかるね。 21 60 花子:そうだね。 それでは,∠BAC が鋭角で, sin < BAC 3. BC=√3, CA=2 で == 4' あるような △ABC は 「鋭角三角形」 と 「鈍角三角形」の2種類あるんだけど, △ABC が鈍角三角形になるときの辺ABの長さはいくらになるかわかるかな。 太郎 : なかなか難しい問題だね。 考えてみるよ。 (1) (ア) に当てはまる数を答えよ。 また, (イ) に当てはまる最も適当なものを, 次 の1~6のうちから一つ選び、番号で答えよ。 f(x-x) 1 0°<0 < 15° 2 15°<0<30° 330°045° 445°<0<60° 560°0<75° 675°<0 <90° (OSA) 3 2 △ABC が鈍角三角形であり,∠BACが鋭角で, sin ∠BAC= = BC=√3, CA = 2 4' のとき, sin∠ABCの値を求めよ。 また, 辺ABの長さを求めよ。 (配点 10)

解決済み 回答数: 1
数学 高校生

(2)で、 なぜ私の解き方は間違っているのか教えてください。 また、AB=√7±√3/2と出てきたらどっちが正しい値かを調べるにはどうしたらいいですか? お願いします。

B2 [1] αは正の定数とし, 集合Pを次のように定める。 mm P={x|x²-(a-1)x-a≧0, xは整数 } (1)a=4 のとき,集合Pの要素をすべて求めよ。 4.0.1.23.4 (2)集合Pの要素の個数が5個であるようなαの値の範囲を求めよ。 3≦ac4 (配点 10 ) 4-3-2- [2] 次の太郎さんと花子さんの会話を読んで,以下の問いに答えよ。 太郎:「三角比(図形と計量)」 については十分勉強したよ。 問題を出してみてよ。 花子: 0は鋭角で, sin 0 となるような日は何度かな。 3081) 1 $0 太郎: 鋭角という条件があるから,0= (ア) だね。 08 花子: 正解です。 では, 0 は鋭角で, sin となるようなは何度かな。 4 太郎:正確な角度はわからないけど,0は (イ) の範囲にあることがわかるね。準 花子: そうだね。 それでは, ∠BAC が鋭角で, sin ∠BAC = =2,BC=√3. CA=2で あるような △ABCは「鋭角三角形」 と 「鈍角三角形」の2種類あるんだけど、 △ABC が鈍角三角形になるときの辺ABの長さはいくらになるかわかるかな。 太郎 : なかなか難しい問題だね。 考えてみるよ。 (1) (ア) に当てはまる数を答えよ。 また, (イ) に当てはまる最も適当なものを、次 の1~6のうちから一つ選び、番号で答えよ。 10°<0<15° 215°0<30° 4 45°<0<60° 560°0<75° 330°045° 675° <0 <90° 2 △ABC が鈍角三角形であり,<BACが鋭角で, sin BAC=4, BC=√3,CA=2 のとき, sin∠ABCの値を求めよ。 また, 辺AB の長さを求めよ。 E (配点 10) A² = b²+c² -2bc cos A

解決済み 回答数: 1