学年

教科

質問の種類

数学 高校生

(2)のOHベクトル=(cosθ)・aベクトルに なる理由が分かりません💦

58 例題 C1.38円の接線、線分の垂直二等分線のベクトル方程式 (1) 中心 CG) 半径1の円C上の点P() における円の接線のベクト 方程式は (Do-c-c=r>0) であることを示せ (2) OA=d, OB=1, |a|=|6|=1, ab=k のとき, 線分 OA の垂直 二等分線のベクトル方程式を媒介変数tとa, b,k を用いて表せ ただし,点Bは直線 OA 上にないものとする。 考え方 (1) Cの接線ℓは, 接点P を通る半径 CP に垂直である.このことを, ベクトルの 内積を用いて表す。中中 (2)B から OA への垂線を BH とする. 線分 OAの中点M (12) を通り BHに平 な直線のベクトル方程式を求める. (x)=9A 解答 (1) 接線上の任意の点をP(p) とすると 6) CP⊥PP または PP=0.58.P.(1 であるから,CP・PP=0 P(p) P≠P のとき, CPOLPOP wwwwwwwwwww 0 CP-po-c. PoP-p-Po £1. S (poc) p-po)=0. C(c) P=P のとき, POP=O Po-c) {p-c)-Po-c)}=0 . · ROSES OP-c) (p-c)-\po-c1-01). Ben | Po-c=CP₁=rc&345, (poc)·(pc)= r² (2) 垂直二等分線上の点Pについて、M(120 OP= p とする.また,B から OA への垂線をBH とし、∠AOB=0 (円とすると,|a|=1.6=1より。 H 円の半径円の ケトル 21150 円 Pop k=ab=1×1×cosa=cosoA(a) OH = (cos0)a=ka これより, B (b) BH=OH-OB=ka-L 垂直二等分線は,線分 OA の中点M(12)を通り BH は 垂直二 線の方向ベクト BHに平行な直線であるから、D=12a+t(ha-6) 注> 中心が原点 O 半径1の円上の点P 円のベクトルカ

解決済み 回答数: 1
数学 高校生

ベクトルの問題です。(2)でOHベクトルが(cosθ)aベクトルになっているのですがこれはどういうことですか?

例題 C1.34 円の接線, 線分の垂直二等分線のベクトル方程式 [考え方 **** (1) 中心 C(), 半径rの円C上の点Po (p) における円の接線のベクト ル方程式は (po-cp-c=r(r>0) であることを示せ (2) OA=a, OB=1,|a|=|6|=1, db=k のとき, 線分 OAの垂直 二等分線のベクトル方程式を媒介変数tとa, b,kを用いて表せ ただし,点Bは直線 OA上にないものとする. (1) 円Cの接線ℓは, 接点P を通る半径 CP に垂直である. このことをベクトルの 内積を用いて表す. (2)B から OA への垂線を BH とする. 線分 OA の中点M (12/22) な直線のベクトル方程式を求める. 解答) (1)接線上の任意の点をP(D) とすると,=1+P CPPP または PP=0 Po po 塗のであるから, CP・PP=0. を通り、BHに平 01 P≠P のとき, CP_POP P=Pのとき、 Pop=0 ESS Columr 平面 OA O の位置 の形て この 斜交 交座 基本 1と CPopo-c, Pop=oより、 Po-c -po=0 (poc)·(p-c)-po-c)}=0=1 po-cp-c-lpo-c|2=0 |po-cl=CP=r であるから、PCD=29) (2) 垂直二等分線上の点Pについて (12) 点 円の半径 30 OP= とする.また, B から OA ② への垂線をBHとし, ∠AOB=0 とすると,|a|=1, |=1 より,|AJ09+ k=d1=1×1xcos0=cos0 A(a) HX P OH= (cos0)a=ka d/=B (6) これより, BH OH OB=ka-18 = BH は,垂直二等分 BH に平行な直線であるから,b=za+t(ka-b) 0812 垂直二等分線は,線分 OA の中点M (12)を通り, → 線の方向ベクトル JE 9867/8-2/12 交

解決済み 回答数: 1