学年

教科

質問の種類

化学 高校生

(2)の時だけ気体の状態方程式が使える理由を教えてください🙏

K=39 H=1.0 C=12 N=14 0=16 第一章 物質の状態 基本例題24 気体の溶解度 →問題 238・239 水素は, 0℃, 1.0×10 Pa で, 1Lの水に22mL 溶ける。 次の各問いに答えよ。 ② 0℃ 5.0×10Pa, 1Lの水に溶ける水素の体積は、その圧力下で何mLか。 (1) 0℃, 5.0×105 Pa で, 1Lの水に溶ける水素は何molか。 (3)水素と酸素が1:3の物質量の比で混合された気体を1Lの水に接触させて、0℃ 1.0×10 Pa に保ったとき, 水素は何mol 溶けるか。 考え方 ヘンリーの法則を用いる。 (1) 0℃, 1.0×10 Paにおけ る溶解度を物質量に換算する。 溶解度は圧力に比例する。 (2) 気体の状態方程式を用い る。 別解 溶解する気体の体 積は,そのときの圧力下では, 圧力が変わっても一定である。 (3) 混合気体の場合,気体の 溶解度は各気体の分圧に比例 する。 ■ 解答 (1) 0℃,1.0×10 Paで溶ける水素の物質量は, 2.2×10-2L 22.4L/mol =9.82×10-4mol 気体の溶解度は圧力に比例するので, 5.0×105 Paでは, 9.82×10-4mol× 5.0×105 1.0×105 -=4.91×10-3mol=4.9×10-3mol (2) 気体の状態方程式 PV =nRT から Vを求める。 4.91×10-3mol×8.3 × 103 Pa・L/(K・mol)×273K 5.0×105 Pa = =2.2×10-2L=22mL 別解 圧力が5倍になると,溶ける気体の物質量も5 倍になる。 しかし, この圧力下で溶ける気体の体積は,ボイ ルの法則から1/5になるので,結局, 同じ体積22mLになる。 (3) 水素の分圧は1.0×10 Pa×1/4=2.5×10 Pa なので, 溶ける水素の物質量は, 9.82×10-4molx (2.5×105/1.0×105 ) =2.5×10-3 mol アンモニ 性溶媒 する。 沸 える た、 一作

未解決 回答数: 0
物理 高校生

教えてください (1)反発係数0で衝突後、物体が止まらずに一体となって動くのはなぜですか?  また、衝突前と衝突後で力学的エネルギーが保存されないのはなぜですか? (2)(II)解答の1行目のかっこの中に、弾性力による位置エネルギーが足されていないのはなぜですか?

解 例題 34 なめらかな水平面上に,質量 M の 板をつけたばね定数kの軽いばねが ある。質量mの小物体が速度vで板 に衝突した。 速度は左向きを正とする。 自然長 10000000 (1) 板と小物体の間の反発係数がe=0のとき (i) 衝突直後の速度 V を求めよ。 (ii) ばねの縮みの最大値 x を求めよ。 (2) 板と小物体の間の反発係数がe=1のとき M m (i) 衝突直後の小物体の速度 v1, 板の速度 V1 を求めよ。 (ii) 衝突による力学的エネルギーの減少量⊿E を求めよ。 なぜ 作用・反作用はたらいて 7 (1)(i) 衝突後, 板と小物体は一体となる。 運動量保存則より mv= = (m + M) Vo . Vo = - mv m+M カマネ保存しない? (ii) 力学的エネルギー保存則より (m+M)V=1/2/kx2 =1/2xxo = Voy m+M mv = kk(m+M) mv=mv+MV1 (2)(i) 1 = — V₁ – V₁ V この2式より 2mv V1= m+M ( 衝突直後) 自然長 V1 U1 V₁ = (m-M)v m+M (ii) AE = ½ mv²-{\mv²+MV?} ココが ポイント Mm いうないで これに,(2)i)の結果を代入して計算すると4E0 すなわち, 弾性衝突 (e=1) の場合には,運動エネルギーの和は減 少しない。 e=1の場合 :運動エネルギーの和は一定に保たれる。 0≦e<1の場合:運動エネルギーの和は減少する。

回答募集中 回答数: 0
物理 高校生

ローレンツ力の分野です。(3)の解説の説明の交流電圧の角周波数が円運動の角速度と等しくなっていれば〰︎とあるのですがなぜそうなるのかわからないです。教えて頂きたいです。よろしくお願い致します。

【3】 正の電気をもつ質量の荷電粒子を加速する ことを考える。いま、半径 R,厚さの中空で半円 形の電極 AとBを図のように距離だけ離し、平面 上に置いた。ただし、厚さと距離はいずれも半 径Rより十分小さいものとする。2つの電極には図 の真上から見た図に対して紙面を裏から表に貫く方 向に磁束密度の大きさ B の一様な磁場がかかって いる。2つの電極ではさまれた領域 (Cとする) には 磁場はないものとする。電極AとBの間には交流 電圧V(f)=Vcos.ℓ,f が加わっており,t=0のと 真上から見た図) C A B P Be Bo /装置の\ 断面 CB 8E き、電極Aが高電位とする。 また領域Cの電場は一様とみなせるとしよう。 ABU Q FK この装置によって荷電粒子が加速されるようすは次のとおりである。 時刻 f=0 に電極 Aの右端の点Pに荷電粒子を置くと電圧V によって加速され、 電極 B に入る。荷電粒 子が2つの電極間の距離を移動する時間は十分短く、その間電圧は一定とみなせるもの とする。電極 Bに入った荷電粒子はローレンツ力を受けて円運動を行い,領域Cに達す るが、電極内の移動時間は領域を通過する時間に比べて十分長い。したがって、この 間に交流電圧の位相が180°変化していれば荷電粒子は再び電圧V によって加速され、 電 極Aに入って円運動を行い、領域Cに達する。 このように電極 A, B内で円運動した荷 電粒子は領域Cを通過するたびに加速をくり返す。以上を考慮して次の問いに答えよ。 (1) 時刻 f=0 電極 A の右端の点P に置かれた初速度の荷電粒子が電極 B に入ると きの速度を求めよ。 (2) 電極 Bに入った荷電粒子が行う円運動と円運動の向き(時計回り、反時計 回り)を答えよ。 (3)(2)の荷電粒子が電極 B内を通過する時間および領域Cに到達した荷電粒子を再 Vで加速するために必要な交流電圧の角周波数」をそれぞれ求めよ。 (4)(3)の荷電粒子が領域Cを通過して電極Aに入るときの速度 #27 電極 A内での円運 動の半径 および電極A内を通過する時間をそれぞれ で表せ。 (5)ここまでの考察により, 荷電粒子は領域Cを通過するたびに電圧Vでどんどん加速 されるが,加速に伴って電極 A, B内での円運動の半径がどんどん増大してしまい 荷電粒子が到達できる速度の上限が電極の大きさに依存してしまう。そこで,荷電粒子 の円運動の半径を保ったまま加速するには磁束密度の大きさと交流電圧の位相をどのよ うに制御すればよいか、答えよ。

回答募集中 回答数: 0