学年

教科

質問の種類

数学 高校生

なんで青線の①の式から辺BCが2:3に内分すると分かったのか謎だし、線分ADを5:6に内分すると言うのもどう考えたら出るのか全くわからないので手がつきません😭😭😭😭🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️教えてください🙏

基本例題 22 分点に関するベクトルの等式と三角形の面積比 ①①①①① △ABCの内部に点Pがあり, 6PÂ +3P+2PC = 0 を満たしている。 (1) 点Pはどのような位置にあるか。 (2) APAB, APBC, APCA の面積の比を求めよ。 解答 (1) 等式を変形すると 指針▷ (1) αPA+6PB+cPC = の問題点Aに関する位置ベクトルAP, AB, AC の式に 直し、AP=k nAB+mAC m+n の形を導く。 A (2) 三角形の面積比 等高な底辺の比②2 等底なら高さの比を利用して,各 三角形と△ABCとの面積比を求める。その際, (1) の結果も利用。 よって -6AP+3(AB-AP) +2(AC-AP)=0 11AP=3AB+2AC ① ゆえに ゆえに AP= 5,3AB+2AC 5 辺BCを2:3に内分する点をDと すると AP-AD したがって, 辺BCを2:3に内分 する点をDとすると, 点Pは線分 AD を 56 に内分する位 置にある。 (2) △ABCの面積をSとすると △PAB= 51.4 △ABD= 6 △PBC= …AABC= 11 APCA-A -.AACD= B 6 53 11 5 D n △ABC=11S •AABC=ns APAB: APBC: APCA = S: S: S p.413 基本事項 [②2] [類 名古屋市大] 基本58 C =2:6:3 差の形に分割。 AB, AC の数に注目す ると,線分 BC の内分点の 3AB+2AC 2+3 位置ベクトル の形に変形することを思い つく。 【等高S,S, S,S,- [参考] 一般に, △ABCと点Pに対し, IPA+mPB+nPC=0 を満たす正の数m,nが存在す るとき,次のことが成り立つ。 (1) 点Pは△ABCの内部にある。 (2) APBC: APCA: APAB=1:m:n

回答募集中 回答数: 0
数学 高校生

107. n>0,m>0よりm-n>0という書き方は問題ないですか? また、m-n≧1というのは m,nはともに自然数だからm+n,m-nは自然数。 自然数×自然数=40(自然数)になるとき m-nは1以上でないと 自然数×自然数は自然数にならないからですか? (わかりやす... 続きを読む

107 √2次式の値が自然数となる条件 n²+40 が自然数となるような自然数n をすべて求めよ。 3 重要 例題 指針> √n²+40= よって ここで, A,B,Cが整数のとき, ABCならば A,BはCの約数 を利用して, ① を満たす整数m+n, m-nの組を考える。 (は自然数)とおき,両辺を平方して整理すると²-n²=40 (m+n) (m-n)=40 ・① このとき,0,n>0より+n>0であるから,①が満たされるときm-n>0 更に,m+n>m-nであることを利用して,組の絞り込みを効率化するとよい。 CHART 整数の問題 (積)=(整数)の形を導き出す 1 - (2数の積)=(整数)の形。 解答 ²+40mmは自然数) とおくと n<m 平方してn²+40=m² ゆえに (m+n) (m-n)=40 mnは自然数であるから, m+n, m-nも自然数であり, 40の約数である。 また,m+n>m-n≧1であるから ① より [m+n=40 [m+n=20 m-n=1 > 一致す ... m+n=10 m+n=8 m-n=5 m-n=2'lm-n=4' 41 13 3 解は順に(m,n)=(1/2,228) (11, 9), (7,3), 39), (22.2) したがって、求めるnの値は n=9, 3 <<n=√√n² <√n² + 40 =m ①m²-n²=40 <n>0から m+n>m-n <m+n=a,m-n=bとす ると a+b 2 a-b 2 <m n が分数の組は不適。 m= n= 検討 積がある整数になる2整数の組の求め方 上の解答の①のように、積) = (整数)の形を導く 1つである。(積)=(整数)の形ができれば、指針の 答えにたどりつくことができる。 また、上の解答では、積が 40 となるような2つ の自然数の組を調べる必要があるが, そのような組 は、右の で示された, 2数を選ぶと決まる。 例えば、 140 に対して (1,40) と (40, 1) の2組 ある。 ちなみに, 「(積が40となる) 2つの整数の組」 が決まるから、条件を満たす組は全部で4×2=8 (組) という条件の場合は、負の場合も考える必要がある ため、組の数は倍 (16組) になる。 しかし、上の解答では, る。 なお、整数α bに対し (a+b)(a-b) = 26 (偶数) であるから, a+b と α-bの偶奇は そのことを利用すると, 上の解答の の組は省くことができて, 2組に絞られるか ことは,整数の問題における有効な方法の を利用することで,値の候補を絞り込み, 40 の正の約数 4023・5 から (3+1)(1+1)=8(個) 1,2,4,5,8,10, 20, 40 を利用することで, (m+n,m-n) の組を4つに絞る工夫をしてい 473 4章 17 約数と倍数、最大公約数と最小公倍数 る。 であ であ 1, n- 音数 あ あ った 数 こ ① + PN >

回答募集中 回答数: 0
数学 高校生

103.2 記述に問題点等ありますか?

と 素 のの 参照。 倍 や 考え さ の はる 去は、 音数 され 本書 数は して、 含め ・35 きる = 5.7 基本 例題 103 約数と倍数 は0でない整数とする。 a, a 1①1) 1/14/0 a がともに整数であるようなαをすべて求めよ。 とんがともに3の倍数ならば, 7a-46も3の倍数であることを証明せよ。 (2) a (③) a が6の倍数で,かつaが6の約数であるとき,aをbで表せ。 「αが6の倍数である」ことは,「6がαの約数である」 ことと同じであり,このとき, 整数kを用いて a=bk と表される。このことを利用して解いていく。 (1) αは5の倍数で,かつ40の約数でもある。 解答 (1) が整数であるから, αは5の倍数である。 ゆえに, って 40 40 8 a 5k k 40 が整数となるのはんが8の約数のときであるから a k = ±1, ±2, ±4, ±8 α=5kと表される。 を整数として したがって α = ±5, ±10, ±20, ±40 (②) a,bが3の倍数であるから,整数k, lを用いて 0 a=3k, b=3l と表される。 よって 7-46=7・3k-4・3l=3(7k-4l) 7k4lは整数であるから, 7a-4bは3の倍数である。 (3) a が6の倍数, αが6の約数であるから, 整数k, lを用いて a=bk, b=al と表される。 a=bk をb=al に代入し, 変形すると b=0であるから (検討 これは 誤り! b(kl-1)=0 kl=1k,lは整数であるから a=±b したがって 00000 p.468 基本事項 ① k=l=±1 bαの約数 a=bk Laは6の倍数 < =k(kは整数)とおい 5 てもよい。 < α = 5k を代入。 負の約数も考える。 <a =5kにkの値を代入。 整数の和差積は整数で ある。 α を消去する。 k,lはともに1の約数であ る。 上の解答の で, lを用いずに, 例えば (2) で α=3k, b=3k のように書いてはダメ! これでは α = bとなり, この場合しか証明したことにならない。 α, 6は別々の値をと のようにk, Z (別の文字) を用いて表さなければならない。 る変数であるから, 練習 (1) 2つの整数 α, bに対して, a=bk となる整数kが存在するとき, bla と書く 103 ことにする。 このとき, a 20 かつ2αであるような整数α を求めよ。 証明せよ。 ただし, a, b, c, d は整数とする。 倍数ならば, ' + 62 は8の倍数である。 とげcdはabの約数である。 469 4章 7 約数と倍数 最大公約数と最小公倍数 17 5 O" ON YO 3 7 し

回答募集中 回答数: 0
現代文 高校生

どうしても問5に2番だけかけないので、誰か例で、書いてくださるとありがたいです…申し訳ないです…

ブザンソンのスーパーでグラスを買った。レジでお金を払おうとしたら、店員に何か言われたが、聞き取れない。もう 一度言ってもらったが、やっぱり聞き取れない。 呆然としていると、店員が肩をすくめて「もう、いいよ」という諦め 顔をした。 スーパーのレジで、キーボードをたたく片手間に発した質問である。 それほど答えに窮するような難しいことをきいて くるはずがない。 気になるので、カウンター越しに身を乗り出して、「今の質問、私に何をさいたのか、気になるので、 教えてください。」と一言一区切って言ったら、向こうも一言一言区切りながら「『郵便番号は何ですか?』ときいた のだ。」と答えた。「グラスを買うのに郵便番号が必要なんですか?」と重ねて問うと、「どこから来たお客がどんな 商品を買うのか、統計を取っているのだ。」と教えてくれて、ようやく腑に落ちた。 今回私が聞き取り損ねたのは「郵便番号」 code postaleという単語である。 予想もしていないことをきかれると、簡単 な単語でも頭に浮かばない。 レジで「年齢はいくつですか?」ときかれても、たぶん私はぽかんとしていただろう。私た ちの聞き取り能力は多く文脈に依存している。だから、「予想の地平」にないものは簡単な言葉でも聞き取れないことが ある。 前に家の近所のスーパーのレジでも、やはり店長に何かきかれて意味が分からず尋ね返したことがある。 商品のバーコ ードをせわしく読み取りながら、店員が「ホレーザ、ゴリョスカ?」ときいてきたのである。 「は?」と二度尋ねてから、 ようやく「保冷剤」という漢字が頭に浮かんだ。こういう種類のコミュニケーション不調を以前はあまり経験した覚えが ないような気がする。 卒業生が家に遊びに来たので、その話をしたら、 婦人服の店で働いている一人が「そうなんです。」と応じてくれた。 彼女の店ではレジで支払いのときにお客に「サービスカードはお持ちですか?」ときくのだそうである。 お客の中のかな りの人は「サービスカード」を聞き取れずに「は?」と問い返す。 二度目のときに彼女は両手の指で四角を作り、「お買 い上げ分のポイントをつけるカードをお持ちですか?」と説明を変えるのだそうである。 それでめでたく話は通じる。 ところが、最近入社してきた若い店員の中にはこの「言い換え」ができず、「サービスカードお持ちですか?」を同じ 調 同じ早さで強度も繰り返す者がいるのだそうである。だから、話が通じない。 しかたなく、肩をすくめて話を打ち 切ることになる。 私は「話が通じないので、肩をすくめて話を打ち切る。」という作法を好まない。そのような態度をとる人は、自分の 言葉が相手に通じない理由を、もっぱら相手の理解力の不足に帰し、自分が相手の「期待の地平」から外れた言葉を口に している可能性を吟味していないからである。 「保冷剤」も「サービスカード」も普通の日本語である。 成人の日本語話者が理解できぬ言葉ではない。それが聞き返 されるのは、 「期待の地平」の設定にずれがあるせいである。そういう場合には両者のどちらにとっても誤解の余地なく コミュニケーションが可能なレベルを探り当て、そこから再度スタートする努力が必要である。この努力のことを「コミ ュニケーションのコミュニケーション」あるいは「メタ・コミュニケーション」と言う。電話で「もしもし」と言ったり、 大教室で「後ろの方、聞こえますか?」と言ったりするのがそれである。 コミュニケーションが成立していることを確認 するための手間のことである。 実は、「肩をすくめて、鼻をフンと鳴らす。」というのも一種のメタ・コミュニケーションなのである。この動作によ って、「私のメッセージはあなたに届いていないが、このコミュニケーション不調の原因は主にあなたにある。」という メッセージは誤解の余地なく相手に伝えているからである。私たちの言語状況の問題点は、メタ・コミュニケーションの 能力が衰えているということではない。 そうではなくて、このような他賣的なメタ・コミュニケーションが発達している ということにある。 しかし、コミュニケーション不調の原因は必ず両者にある。一方だけが有資で、他方にはとがめられるべき瑕疵が全く ないということはありえない。だから、コミュニケーションを回復するためには、まず自分が「身銭を切って、分岐点 まで戻るための一歩を踏み出さなければならない。 私がカウンターから身を乗り出し、言葉を一言一言区切って発音したのは、その「身」であり、それに一言一言切 って答えたのは、店員なりの「身」である。私は彼女のこの「手間暇」を多とするのである。 (内田樹「『身銭』を切るコミュニケーション」)

回答募集中 回答数: 0
数学 高校生

63. 記述に問題点等ありますか??

る確率 機械 63 良品 械 A を当 の意 製造 3 50 ベイズの定理 重要 例題 63 袋には赤球10個,白球5個,青球3個;袋Bには赤球8個,白球4個,青球 00000 ;袋Cには赤球4個,白球3個,青球5個が入っている 1 3つの袋から1つの袋を選び, その袋から球を1個取り出したところ白球であっ それが袋Aから取り出された球である確率を求めよ。 した。 袋Aを選ぶという事象をA, 白球を取り出すという事象をWとすると, 求める確率は P(WNA) 条件付き確率Pw (A)= よって、P(W),P(A∩W)がわかればよい。まず,事象 Wを3つの排反事象 [1] A から白球を取り出す,[2] B から白球を取り出す, [3] C から白球を取り出す に分けて, P(W) を計算することから始める。 また P(A∩W)=P(A)P(W) 袋 A, B, C を選ぶという事象をそれぞれ A, B, C とし, 白球 | ⑩ 複雑な事象 を取り出すという事象をWとすると 排反な事象に分ける P(W)=P(A∩W)+P(B∩W) + P(COW) 1 1 5 3 18 よって 求める確率は =P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 1 5 + 3-2 2-3 41 +2²7 + 1/²2 - 11 12 54 4 + 1 4 3 18 検討 ベイズの定理 上の例題から、Pw (A)= AMB, A₂B, 一致し,PB (Ak)= P(W) である。・・・・・・・・・ Pw(A) = P(ANW) _ P(A)PÂ(W) _ 5 P(W) P(W) 54 . P(B) ·|· P(B) 1 10 4 27 加法定理 乗法定理 基本 62 A B C AOW BOW Cow 2 27 W 5 542 P(A)PA (W) P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 一般に, n個の事象 A1, A2, ・・・・・・, An が互いに排反であり, そのうちの1つが必ず起こるもの とする。このとき 任意の事象B に対して,次のことが成り立つ。 PB(AR)= P(Ah) PAN (B) (k=1,2,.., n) P(A)PA,(B)+P(A2)P,(B)+......+P(A)Pa,(B) | これをベイズの定理という。このことは, B=(A∩B) U(A20B) U......U (A∩B) で, A∩Bは互いに排反であることから、上の式の右辺の分母が P(B) と一 P(B∩Ak)P(A∩B) かつP(A∩B)=P(Ak) Pa, (B)から導かれる。 001 が成り立つ。 14 12 A-0004 練習 =) 45 (1 63 仕入れた比率は4:3:2であり, 製品が不良品である比率はそれぞれ3%, 4%, ある電器店が A 社, B 社 C社から同じ製品を仕入れた。 A社、B社、C社から | 5%であるという。 いま、大量にある3社の製品をよく混ぜ,その中から任意に1 [類 広島修道大] (p.395 EX46 |個抜き取って調べたところ, 不良品であった。 これがB社から仕入れたものであ る確率を求め 393 2章 9 条件付き確率 る る る る。 立つ。 である である m-1) 倍数で である 1, 2) ったと 灼数は, あるな を満 には, ①へ。 14234 n進 という。

回答募集中 回答数: 0
数学 高校生

頂点の記述はないけど図示したものに書いてるから大丈夫ですか?問題点あれば教えて欲しいです。

:0 D 基本例題 76 2次関数の最大・最小 (1) 次の2次関数に最大値, 最小値があれば,それを求めよ。 (1) y=3x²+4x-1 (2) y=-2x2+x 指針▷ まずy=ax²+bx+c の形の式を変形 (平方完成) して, 基本形y=a(x-p+g に直す ..........! 次に, 定義域は実数全体であるから, グラフが上に凸か 下に凸かに注目する。 下に凸の放物線 上に凸の放物線 CHART 2次式の扱い 平方完成してa(x-b) +αに直す 解答 (1) y=3x2+4x-1 x== よって, グラフは下に凸の放物線で, 頂点は(-.--) ゆえに 7 (2)y=-2x2+x 最大値はない。 頂点で最小 頂点で最大 7 で最小値-1/23 ゆえにx= 1 = -2(x-1)² + ¹ よって, グラフは上に凸の放物線で, 頂点は点 (1/11/3) -1/13 で最大値 1/11 4 最小値はない。 最大値はない。 最小値はない。 8 10 9₁ 0 最小 最大 -1 x 00000 p.126 基本事項 重要87 a>0 下に凸 頂点で最小 13x²+4x-1 = 3{x² + x + ( ² )²} a<0 上に凸 頂点で最大 -1 <2x²+x yの値はいくらでも大きく なるから、 最大値はない。 =-2x-1/2/2x+(1/4)} +2·(1)² yの値はいくらでも小さく なるから, 最小値はない。 注意 問題文に書かれていなくても、最大値・最小値を求める問題では,それらを与えるxの値を 示しておくのが原則である。 また、「最大値、最小値があれば,それを求めよ。」 という問題で, 最大値または最小値がな い場合は,上の解答のように 「~はない」 と必ず答える。 127 3章 10 2次関数の最大・最小と決定

回答募集中 回答数: 0
現代文 高校生

この文章の問6の問題なのですが、ロ、ホが正解でして、ホが正解なのがよくわからないのです。全体的には合っていると思うのですが、歴史的、非歴史的、というのが文章のどこにも書かれていないので合っていないと思います。なぜホが正解になるのですか。

g++ 問五傍線部2「アフリカ美術の取り扱い方」 とあるが、筆者によれば 「ジェームズ・クリフォー ド」は「アフリカ美術」の近代における動向をどのように捉えているか。それを表す三十五 字以上四十字以内の箇所を抜き出し、冒頭と末尾の三字をそれぞれ記せ。 問六本文の内容に合致するものを、次の中から二つ選べ。 一九八四年にサイードが企画した展覧会に対し、クリフォードはそこに見出される日本 人像が、西洋の歪んだ自己認識から生み出されたものであることを指摘した。 ロクリフォードは、西洋がアフリカ文化を自分勝手な仕方で捉えているばかりか、そうし た西洋中心主義的な自らのありように無自覚でもあることを厳しく批判した。 ハクリフォードによれば、ピカソなどの「モダンアート」とアフリカの「部族美術」に親 縁性があるのは、アフリカ文化が先進国である西洋の文化を模倣してきたからである。 ニ「オリエンタリズム」 をめぐるサイードの議論によれば、西洋は非西洋を遅れたものと見 なしつつも、つねに「エキゾティック」なものとして神秘化し、崇敬の対象としてきた。 ホ 西洋は自文化を進歩し続ける歴史的なものと捉えつつ、アフリカ文化を静止した非歴史 的なものとして保護するという形で抑圧している、とクリフォードは主張した。 語句の意味 エキゾティック(ℓ7) 異国情

回答募集中 回答数: 0
生物 高校生

リードαです。 正解か教えて欲しいです

のように、トウヒ林になると土壌中の窒素量が減少した理由を説明せよ。 土壌中の窒素量がハンノキ低木林で増加した理由を説明せよ。 ノキ低木林で酸性になった理由を説明せよ。 ( 16 三重大改) 96. 生態系に関する以下の問いに答えよ。 人間の活動、たとえば森林伐採や焼き畑農業 農地開墾などはかく乱を引き起こす。 表1、表2は草原 (ステップ)を小麦畑(小麦の単植栽培)に変えたときの昆虫グループの 種数や総個体数などの変化を示したものである。 (1) 表1を参考に, 自然生態系 (草原) から農 表1 昆虫種数と種数 総個体数の変化 業生態系 (小麦畑)に変わることで、 生物 の種数や個体数にどのような変化が生じ たかを20字以内で記せ。 草原 小麦畑 (2) 表2を参考に、 自然生態系から農業生態 系への移行に伴い, 優占種に生じた変化 について 60字以内で記せ。 (3) 現在の農業は、 収量や作業性を高める目 的で、特定の1種類の作物 (植物種) がほ 場全体に栽培される単植栽培が中心であ る。 現代農業における単植栽培の問題点 について 表1および表2から考えられ ることを次の中からすべて選べ。 (a) 生物の多様性が高くなる。 優占種の種数 (b) 生物の多様性が低くなる。 優占種の総個体数/1m² (c) 一部の種の個体数が増加する。 全種の個体数に占める 優占種の個体数(%) (d) すべての種の個体数が増加する。 (e) 自然制御 (天敵や拮抗微生物) がはたその地域に生息する動物(昆虫)の中で、他 らきにくい。 の種に比べて個体数が多い動物(昆虫) [ 16 宮崎大改〕 アブラムシ類 ウンカ類 カメムシ目 コウチュウ目 ハチ目 その他 総種数 すべての種を合わせた 総個体数/1m² 197 (1) 3 35 38 93 · |- ( ¹¹ + 25 37 137 340 199 表2 優占種の種数と個体数の変化 草原 41 111 56 12 19 39 18 54 142 351 1 35 (1) 面積などの環境条件が同じ6枚の水田を対象として, あぜの草刈り頻度とあ に出現する植物食の昆虫 (植食性昆虫)の多様度との関係を調べた。 各水田におい 年間あたり あぜの草刈りを0回 1回 2回 3回 4回 5回のいずれかを行い 期間後にあぜに出現する6種(A~F)の植食性昆虫の出現個体数を表に記録し た。ただし、各水田は互いに離れた場所に位置し、 他の水田の草刈りの影響はない ものとする。 |小麦畑 19 332 97. 次の文章を読み、以下の問いに答えよ。 里山は, 集落を取り巻く雑木林や草地, ため池, 水田などによって構成される複 合的な生態系, 古くから人が手を入れることによって維持されてきた。 人間活動は, 多くの場合, 生物多様性に負の影響を与えるが, 里山では、 人と自然との間のかかわ りによって生物多様性が維持形成されていると考えられる。 そのしくみを明らかにす るため、 水田のあぜ草管理に着目し, 次の実験を行った。 95 (番号) 1 (2 3 4. 5 草刈り 0 1 2 3 4 5 A 2000 1050 240 80 0 0 あぜの植食性昆虫6種の出現個体数 ( B C D E 0 150 0 150 240 80 0 0 0 0 240 80 50 0 0 150 240 80 100 0 2 240 240 2 H-{( ² ) + ( 700 ) + (1000)* + (7000) HUT + ¹2 he) + 25 100 100 120 400 350 ・・・+ 300 F 4 q 41 0.8. - / - ( + ) · |- · -0.24, 100 50 (2)草刈りは年に2回行うとよい。 0 0 120 80 0 0 + 総個体数 (N) 実験2) 実験1では, 草刈り頻度の低い水田 (水田1) と高い水田 (水田6) で特定の種 が優占するしくみがわからなかった。 そこで、 水田1とその周囲からA種を選択的 に除去し、 A種は再移入できないが、 他種は移入できるようにした。 同様に、 水田 とその周囲からE種を選択的に除去し, E種は再移入できないが、他種は移入で きるようにした。 各水田において, 実験1と同じ回数の草刈りを行い,一定期間後 にあぜに出現する植食性昆虫群集を調べた。 結果, 水田 1 では A種の除去後に他の 2000 1500 植食性昆虫種 (BF) が見られたのに対し、 水田6ではE種の除去後に他の植食性 昆虫種の移入は見られなかった。 実験1の結果にもとづき、 あぜの植食性昆虫の多様度が最大になる水田の番号を表 1200 800 から1つ選べ。 また. その水田の植食性昆虫の多様度(多様度指数)の値を、以下の 数式から計算し、小数点以下第2位まで答えよ。 多様度指数=1-(P2+P2^2 + P3...+ P3 ) = 1 - 1 + 500 300 1200 N P,はある水田における植食性昆虫種の出現頻度, n, はある水田における植食性 昆虫種の個体数Nはある水田における植食性昆虫種の総個体数を示す。 (②2) 実験1の結果にもとづき、 多様度が最大になるための植食性昆虫の種構成に関する 条件を2つ答えよ。 (3) 実験 1. 2の結果にもとづき、 あぜの植食性昆虫の多様度を最大にするためにはど のようなあぜ草管理が必要か 草刈りの頻度に応じて特定の植食性昆虫種が優占種 [16 金沢大) となるしくみとともに説明せよ。 平均気 n.1 | + (1) (1) 本の教度が高いと特定の植物性虫が検証様となるため、 あぜ・植物住民の多様度を最大にするためには年に数回 草刈りを行うと。 17

回答募集中 回答数: 0