学年

教科

質問の種類

数学 高校生

Pnが近づく点を求めたいのにXnの極限を求めているのがなぜだかわかりません。解説お願いします。

重要 例題 24 図形に関する漸化式と極限 R1 図のような1辺の長さαの正三角形ABCにおいて, 頂点 CA Aから辺BCに下ろした垂線の足を とする。 P, から辺 ABに下ろした垂線の足を Q1, Q1 から辺CAへの垂線の 足を R1, R1 から辺BCへの垂線の足をP2 とする。 このよ うな操作を繰り返すと, 辺BC上に点P1, P2, ......, Pn, h が定まる。このとき, Pn が近づいていく点を求めよ。 MOITLE B P1 P2 C 2章 基本 19. 数学 B 基本 36 3 CHART & SOLUTION 図形と極限 番目と (n+1) 番目の関係を調べて漸化式を作る ) BP=xm として, BP1 (すなわち X+1) を X で表す。 直角三角形の辺の比を利用して進 める。 3D 数列の極限 解答 である。 BP=xn とする。 すべての BQn=BP =1/2BP=1/2x ARn= AR,1/12AQ=1/2(4-1/2) CRn=CA-ARn=a- 1a -Xn 1 a -Xn, CPCR.-(+)-+ = = 2 2 = 4 8 3 BP+1=BC-CP+1-a-(+ 1/1 x n ) = 1 / a − 1/1 x n n+ -a 4 8 - x n X T F xn 0-2 A xn a 1 xnl + 2 4 xn] [2] [1xuiQm 2:0 B Xn JR P/P+1 a-(a) xn-ti 4 そのままでもOK. 1 13 2 2 ゆえに Xn+1= xn+ 変形すると Xn+1 =- 8 04 a Xn 3 よって、数列{ x /12/24}は初項 x 1/34, 2 -BR== a 3a a, a= 2 公比 E-1の等比数列であり Xn 8 3 n-1 ga 8 1/4+24 の解は α = 1/24 xn-a=(-1) ( x − a) xn- 3 = 2 n-1/ ゆえに xn= (12/12)(3)+3/31 よって - -a+ X1 n→∞ = ga したがって, Pnが近づいていく点は辺BC を2:1に内分する点である。 -a ma limx=2大 mil (S) 子点と

解決済み 回答数: 1
物理 高校生

⑵の解説をお願いします。🙇 何故1:2√3が出てきたのかよくわかりません。 お手数ですが、よろしくお願いします

基本例題 2 速度の合成 4,5,6 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船で 移動する。 2.0m/s (1) 同じ岸の上流と下流にある, 72m離れた点A と点Bをこの船が往復するとき,上りと下り に要する時間 〔S〕, t2 〔s] をそれぞれ求めよ。 72m B A 2.0m/s 60m (2) この船で川を直角に横切りたい。 へさきを向けるべき図の角0 の値を求めよ。 (3)(2), 川幅60m を横切るのに要する時間 t [s] を求めよ。 指針 (2) 船 (静水上) の速度と川の流れの速度の合成速度の向きが, 川の流れと垂直になればよい。 解答 (1) 上りのときの岸に対する船の速度は BAの向きに 4.0+(-2.0)=2.0 72 注 川を横切る船は, へさきの向きとは 異なる向きに進む。 Q R 60° m/s だから ム=- =36 s 2.0 下りのときの岸に対する船の速度は ABの向きに 4.0+2.0=6.0m/s 72 (3) 合成速度の大きさを v [m/s] とすると, 4.0m/s v 60% 直角三角形の辺の比より P2.0m/s だから = =12s v=2.0x√3m/s 6.0 (2) 船が川の流れに対して直角に進むの で, 右図のように, 船 (静水上) の速 度と川の流れの速度の合成速度が, 川の流れと垂直になる。 ここで, △PQR は辺の比が1:23 の直 角三角形である。 よって0=60° ここで,3=1.73 として t=10×1.73=17.3≒17s 注 √3=1.732・・・ や √2 =1414… など の値は覚えておこう。 この速さで60mの距離を進むので t=- 60 2.0x3 60×3 2.0×3 =10√3s

解決済み 回答数: 1
物理 高校生

これの(2)と(3)が解説を読んでも分からないので教えて頂きたいです!!

基本例題 2 速度の合成 4,5,6 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船で 移動する。 2.0m/s 2.0m/s (1) 同じ岸の上流と下流にある, 72m離れた点A と点Bをこの船が往復するとき,上りと下り に要する時間 t [s], t2 [s] をそれぞれ求めよ。 a (4) 13060m 72m A (2) この船で川を直角に横切りたい。 へさきを向けるべき図の角0 の値を求めよ。 ◆(3) (2) のとき, 川幅60m を横切るのに要する時間 t [s] を求めよ。 BAの向きに 4.0+(-2.0)=2.0 指針 (2) 船 (静水上) の速度と川の流れの速度の合成速度の向きが, 川の流れと垂直になればよい。 解答 (1) 上りのときの岸に対する船の速度は 72 [注] 川を横切る船は, へさきの向きとは 異なる向きに進む。 Q R 60° 2.0 (3)合成速度の大きさを v [m/s] とすると, 4.0m/s v 60% 直角三角形の辺の比より P2.0m/s v=2.0x√3m/s m/s だから= =36s 下りのときの岸に対する船の速度は ABの向きに 4.0+2.0=6.0m/s 72 6.0 だから t2= -=12s (2) 船が川の流れに対して直角に進むの で,右図のように, 船 (静水上) の速 度と川の流れの速度の合成速度が, 川の流れと垂直になる。 ここで △PQR は辺の比が1:2:√3の直 角三角形である。 よって 0=60° この速さで60mの距離を進むので 60 t=- 2.0x√3 60×3 2.0×3 -=10√3s ここで,√31.73 として t=10×1.73=17.3≒17s [注 √3=1.732 ··· や, 21414... など の値は覚えておこう。

回答募集中 回答数: 0