学年

教科

質問の種類

数学 高校生

赤で囲った部分 増減表の-+てどうやって分かるんですか? シータを動かすイメージからですか?

103 最大・最小の応用問題 (1) aを正の定数とする。 台形 ABCD が AD // BC, 基本 10 103 例題 |AB=AD=CD=α, BC >α を満たしているとき、台形の [類 日本女子大 ] ABCDの面積Sの最大値を求めよ。 ・基本 98 重要 104 \ 詳しく(各画) ∠ABC=∠DCB=0 とすると, 解答 0 <8<1で,右の図から HC 文章題では,最大値・最小値を求めたい量を式で表すことがカギ。次の手順で進める。 ① 変数を決め、その変域を定める。 指針 ② 最大値を求める量 (ここでは面積 S) , ① で決めた変数の式で表す。 ③② の関数の最大値を求める。 この問題では,最大値を求めるのに導関数を用いて 増減を調べる。 S= この問題では,AB=DC の等脚台形であるから,∠ABC=∠DCB=0 として,面積 S を9 (と定数α)で表すとよい。 -{a+(2a cos 0+a)}.asin0 =a² sin 0(cos 0+1) ds do Ips よって数 sta) dS=0 とすると do cos0=-1, 0<θ< < π π 0 = 3/ から -α² をとる。 3点O(0, 0), 1 2 0 =a^{cose(cos0+1)+sin0(-sin 0)} =a^{cos B(cos0+1)-(1-cos20)} =a²(cos 0+1)(2 cos 0−1) ds do S B 0 ... ・題材は平面上の図形 ①① す。ただし,00とする。 : + KER asin0円 HO a- a cose. π 3 0 極大 3√3 T π 00におけるS の増減表は右上のようになるから, Sは0=173 で最大値 3√3 B 2 A D <BC> AB=AD = CD から 0<0<π K<E 2 1/12/3× -×(上底+下底)×高さ Sを0で微分。 別解頂点Aから辺BCに 垂線AHを下ろして、 BH = x とすると |S={a+(2x+a)} x√√a²-x² =(x+a)√a^²-x2 これをxの関数と考え, 0<x<a の範囲で増減を調べ る。 4 章 4 関数の値の変化、最大・最小 A ( 12, 0), P(cos, sing)と点Qが,条件 OQ=AQ=PQ を満た [類 北海道大]

解決済み 回答数: 1
数学 高校生

129. 記述これでも大丈夫ですか??

JUL 510 OS 00000 基本例題1291次不定方程式の応用問題 3で割ると余り, 5 で割ると3余り, 7で割ると4余るような自然数nで最小の ものを求めよ。 指針▷ 基本 127,128 が共通の数。 8が最小である。 3で割ると2余る自然数は 2,5, 8, 11, 14, 17, 20, 23, 5 で割ると3余る自然数は 3, 8, 13, 18,23, よって、「3で割ると2余り, 5 で割ると3余る自然数」を小さい順に書き上げると 3と5の最小公倍数 15 ずつ大きくなる。 A8, 23, 38, 53, 68, また, 7で割ると4余る自然数は B 4, 11, 18, 25, 32, 39,46,53, A,B から、求める最小の自然数は53 であることがわかる。 このように、書き上げによって考える方法もあるが,条件を満たす数が簡単に見つからな い (相当多くの数の書き上げが必要な) 場合は非効率的である。 -110/ そこで,問題の条件を1次不定方程式に帰着させ、その解を求める方針で解いてみよう。 CTORUTSJEFE 解答 nはx,y,zを整数として,次のように表される。 注意x+2=5y+3 3)=0 S&TS 5y+3=7z+4 n=3x+2, n=5y+3, n=7z+4 小 3x+2=5y+3 から 3x-5y=1 x=2, y=1は, ① の整数解の1つであるから 3(x-2)-5(y-1) = 0 すなわち 3(x-2)=5(y-1)x 3と5は互いに素であるからんを整数として, x-2=5kと表 される。よって x=5k+2(kは整数) ② bom) 3(5k+2)+2=7z+4 ② を 3x+2=7z+4に代入して ゆえに z=-8, k=-4 は、 ③の整数解の1つであるから 7(z+8)-15(k+4)=0 すなわち 7(z+8)=15(+4) 7と15 は互いに素であるから, lを整数として,z+8=157 と 表される。 よって z=151-8 (Zは整数) (Thom) これをn=7z+4に代入して n=7(157-8)+4=1057-528 最小となる自然数nは, l=1 を代入して 53 TE bom) 85-= として解いてもよいが,係 数が小さい方が処理しやす い。 このときy=3k+1 x-7z=2から 7z-15k=4...... ③③ A+ASA-=(A+10)-06-3(x-3)−7(z−1)=0 ゆえに, Zを整数として x=7l+3 これと x=5k+2 を等置し て 5k+2=7l+3 よって5k-71=1 これより, k, lが求められ るが, 方程式を解く手間が 1つ増える。 検討 百五減算 2+(3=376)00=1+00=178 ある人の年齢を3,5,7でそれぞれ割ったときの余りをa,b,c とし, n= 70α+216+15c とす る。このnの値から 105 を繰り返し引き, 105より小さい数が得られたら、その数がその人の年 齢である。 これは 3,5, 7で割った余りからもとの数を求める和算の1つで、 百五減算と呼ばれ る。なお,この計算のようすは合同式を用いると,次のように示される。 求める数をxとすると, x=a (mod3), x=6 (mod5) x=c (mod7) であり, n=70a=1•a=a=x (mod 3), n=21b = 1.b = b = x (mod 5), n=15c=1+c=c=x (mod 7) よって, n-xは3でも5でも7でも割り切れるから, 3, 5, 7 の最小公倍数 105 で割り切れる。 ゆえに,を整数として, n-x=105k から x=n-105k このkが105を引く回数である。 TRON 練習 3で割ると2余り,5で割ると1余り, 11で割ると5余る自然数nのうち (3) 129 1000 を超えない最大のものを求めよ。 どのよう できない 3m よー 解答 mnは食 [1] n= よって, x=3m- [2] n= ここで. よって ......) [3] n= ここで よって ......) [1]~[3] 形に表す よって, したが一 (検討 次ペー しかし 然数も なお、 a

解決済み 回答数: 1
数学 高校生

129. 記述これでも大丈夫ですか??

JUL 510 OS 00000 基本例題1291次不定方程式の応用問題 3で割ると余り, 5 で割ると3余り, 7で割ると4余るような自然数nで最小の ものを求めよ。 指針▷ 基本 127,128 が共通の数。 8が最小である。 3で割ると2余る自然数は 2,5, 8, 11, 14, 17, 20, 23, 5 で割ると3余る自然数は 3, 8, 13, 18,23, よって、「3で割ると2余り, 5 で割ると3余る自然数」を小さい順に書き上げると 3と5の最小公倍数 15 ずつ大きくなる。 A8, 23, 38, 53, 68, また, 7で割ると4余る自然数は B 4, 11, 18, 25, 32, 39,46,53, A,B から、求める最小の自然数は53 であることがわかる。 このように、書き上げによって考える方法もあるが,条件を満たす数が簡単に見つからな い (相当多くの数の書き上げが必要な) 場合は非効率的である。 -110/ そこで,問題の条件を1次不定方程式に帰着させ、その解を求める方針で解いてみよう。 CTORUTSJEFE 解答 nはx,y,zを整数として,次のように表される。 注意x+2=5y+3 3)=0 S&TS 5y+3=7z+4 n=3x+2, n=5y+3, n=7z+4 小 3x+2=5y+3 から 3x-5y=1 x=2, y=1は, ① の整数解の1つであるから 3(x-2)-5(y-1) = 0 すなわち 3(x-2)=5(y-1)x 3と5は互いに素であるからんを整数として, x-2=5kと表 される。よって x=5k+2(kは整数) ② bom) 3(5k+2)+2=7z+4 ② を 3x+2=7z+4に代入して ゆえに z=-8, k=-4 は、 ③の整数解の1つであるから 7(z+8)-15(k+4)=0 すなわち 7(z+8)=15(+4) 7と15 は互いに素であるから, lを整数として,z+8=157 と 表される。 よって z=151-8 (Zは整数) (Thom) これをn=7z+4に代入して n=7(157-8)+4=1057-528 最小となる自然数nは, l=1 を代入して 53 TE bom) 85-= として解いてもよいが,係 数が小さい方が処理しやす い。 このときy=3k+1 x-7z=2から 7z-15k=4...... ③③ A+ASA-=(A+10)-06-3(x-3)−7(z−1)=0 ゆえに, Zを整数として x=7l+3 これと x=5k+2 を等置し て 5k+2=7l+3 よって5k-71=1 これより, k, lが求められ るが, 方程式を解く手間が 1つ増える。 検討 百五減算 2+(3=376)00=1+00=178 ある人の年齢を3,5,7でそれぞれ割ったときの余りをa,b,c とし, n= 70α+216+15c とす る。このnの値から 105 を繰り返し引き, 105より小さい数が得られたら、その数がその人の年 齢である。 これは 3,5, 7で割った余りからもとの数を求める和算の1つで、 百五減算と呼ばれ る。なお,この計算のようすは合同式を用いると,次のように示される。 求める数をxとすると, x=a (mod3), x=6 (mod5) x=c (mod7) であり, n=70a=1•a=a=x (mod 3), n=21b = 1.b = b = x (mod 5), n=15c=1+c=c=x (mod 7) よって, n-xは3でも5でも7でも割り切れるから, 3, 5, 7 の最小公倍数 105 で割り切れる。 ゆえに,を整数として, n-x=105k から x=n-105k このkが105を引く回数である。 TRON 練習 3で割ると2余り,5で割ると1余り, 11で割ると5余る自然数nのうち (3) 129 1000 を超えない最大のものを求めよ。 どのよう できない 3m よー 解答 mnは食 [1] n= よって, x=3m- [2] n= ここで. よって ......) [3] n= ここで よって ......) [1]~[3] 形に表す よって, したが一 (検討 次ペー しかし 然数も なお、 a

回答募集中 回答数: 0
数学 高校生

126.1 解説の3行目以降の()は何をしているのですか?

504 00000 基本例題126 互除法の応用問題 (1) 2つの整数m,nの最大公約数と3m+4n, 2m+3n の最大公約数は一致す ることを示せ。 (2) 7 +48 +5 が互いに素になるような 100 以下の自然数n つあるか。 指針 最大公約数が関係した問題では, p.501 基本事項 ① (*)で示した, 右の定理を利用して,数を小さくし ていくと考えやすい。 本問のように,整式が出てくるときは,まず, 2つの 式の関係をa=bg+r の形に表す。 次に, 式の係数や次数を下げる要領で変形していくとよい。 解答 2 数A, B の最大公約数を (A,B) で表す。 口 (1) 3m+4n=(2m+3m) ・1+m+n, 2m+3n=(m+n) ・2+n, m+n=n·1+m よって (3m+4n, 2m+3n)=(2m+3n, m+n) =(m+n, n)=(n, m) したがって,m,nの最大公約数と3m+4n,2m+3nの最 大公約数は一致する。 221 DE 01 ① とおくと 2 は全部でいく p.501 基本事項 ① aとbの最大公約数 a=batr 等しい 3m+4n=a m=3a-4b [別解 2m+3n=b n=36-2a mとnの最大公約数をd, aとbの最大公約数をeとする。 ① より αと6はdで割り切れるから, dはaとbの公約数 である。 ゆえに d≤e ...... e≦d 同様に,②よりはとnの公約数で ③ ④ から d=e よって, 最大公約数は一致する。 (2) 8n+5=(7n+4)·1+n+1, 7n+4=(n+1).7-3 ゆえに (8n+5, 7n+4)=(7n+4, n+1)=(n+1, 3) 7 +4と8+5は互いに素であるとき, n+1と3も互いに 素であるから, n +1と3が互いに素であるようなnの個数 を求めればよい。 R-X10 2≦n+1≦101 の範囲に,3の倍数は33個あるから 求める 自然数は 100-3367 (個) 練習 ③ 126 (1)a,bが互いに素な自然数のとき, 3a+7b 2a+5b とrの最大公約数 差をとって考えてもよい。 3m+4n-(2m+3n) = m+n 2m+3n-(m+n)=m+2n m+2n-(m+n)=n m+n-n=m <m=dm',n=dn', a=ed', b=eb' とする ① は 'd(3m'+4n')=a d(2m'+3n')=b re(3a'-4b')=m e(36'-2a')=n ②は a=bg-r のときも (a, b)=(b, r) が成り立つ。 .501の解説 と同じ要領で証明できる。 は既約分数であることを示せ。 (2) 3n+1と4n+3の最大公約数が5になるような50以下の自然数nは全部で いくつあるか。 Op.514 EX87.88 以下 1 フ r 角 例1 た た x 例2 方 a VE x ア G C Q Ve 3

回答募集中 回答数: 0
化学 高校生

解説のオの説明がよくわかりません。

リンダーやし ットは、精度 ので中和滴 い。 による膨張・ んでしまう 盛りのついた 乾燥してはい HOUSIN t |------- 4 商下量(ml) 122 I (ア)正しい。一方,金属元素の酸化物には,塩基性酸化物が多い。 (イ) 正しい。 アンモニウムイオンは水分子と反応して, オキソニウムイ オンを生じる。 q0I\lom 01x01 J Tomisor NH4+ + H2O NH3 + H3O+ このときNH4+ は H2O に H+ を与えているので, 酸としてはたらいて いる。 (ウ) 正しい。弱酸の電離度は濃度により異なり,濃度が薄いほど大きい。 弱酸は電離しにくく, 弱酸分子に対して水分子が多い (溶液が薄い) ほど,弱酸分子からH+が奪われて H3O+ を生じる割合が高くなるの である。したがって,酸の強弱を比較するときは濃度を同じにしな くてはいけない。 (エ) 誤り。水と反応しない。 単に電離するだけである。 (オ) 正しい。 2価の弱酸の電離は2段階で行われる。 H2CO3 H+ + HCO3 (第一電離) HCO3- ⇒ H+ + CO32- (第二電離) 一般に, 2価の弱酸の第二電離は第一電離に比べて電離度が小さい。 したがって、 第二電離により生じる陰イオン (CO²-) のほうが, 第一 電離により生じる陰イオン (HCO3-) よりもH2O からH+を奪う傾向 が強く, 塩基性が強い。 123 (1) (2) 誤り (3) 誤り (1) 純水では[H+]=1.0×10mol/L であるから水1Lのうちの 07030 1.0×10-mol が電離していることになる。また,水 (分子量 18) 1L=1000g の物質量は 1000g 1000 S 18g/mol 18 電離度= 1.0×10mol 1000 18 = ・mol ・mol である。よって, =1.8×10-9 (2) pH=3 より [H+]=1.0×10mol/L HClの濃度は1.0×10mol/L T これを10万倍 (10倍) に薄めると 1.0×10mol/L, [H+]=1.0×10²n 8mol/I 17 7 7 7 3 KEZ ただし (Tom) (65000-1 hả nH−8 1 濃 比較 学子 Lor JOL foni 600

解決済み 回答数: 1