学年

教科

質問の種類

物理 高校生

名問の森電磁気10番です。お願いします!! (5)までは理解しているのですが、(6)がわかりません。保存則の等式で、右辺の電位が0になる理由がわからないです。確かに、点電荷A、Bからなる電位は点Oでは0なのでしょうが、一様電場からの静電気力は右向きですので、左に行くほど位置... 続きを読む

F=qE[N] の力を受ける。正電荷はEと同じ向きの力を, 負電荷は逆向きの 電気分野の基礎は何といってもクーロンの法則だが, 実用上は電場(電界)Eと 38 電磁気 10 静電気 +Q[C)の点電荷をA点に, -Q(C) の点電荷をB点に固 定する。AB間の距離は21 [m]であり,ABの中点をO とし、0点からL[m]離れた ABの垂直2等分線上の点を Cとする。クーロンの法則の 比例定数をk [N.m'/C°] と 無限遠を0[V]とする。 0点とC点での電場(電界)の向きと強さをそれぞれ求めよ。 (210点の電位と, 線分OBの中点Mの電位を求めよ。 ta[C]の電荷をもつ質量m[kg]の小球PをM点に置き, 静かに 横す。 Pが0点を通るときの速さを求めよ。 次にPをC点に置き, 線分ABに平行に一様な電場をかける。する と、Pに働く静電気力は, 一様な電場をかける前に比べて, 向きが逆 転し大きさが半分となった。 (一様な電場の向きと強さを求めよ。 PをC点からM点まで静かに移動させた。この間に外力のした仕 事を求めよ。 C +Q 0 M A B M点でPを静かに放すと, Pは左へ動き出し, やがて0点に達し、 一瞬静止した。 このことからLを1で表せ。 Level (1) 0 : ★★ C:★ (2)~(4) ★ (5)★ (6)★★ Point & Hint 電位Vが重要な役割りを果たす。 その

回答募集中 回答数: 0
物理 高校生

できる問題だけでいいので、 解説をお願いします‼︎

次の(1)~(5)の問いに答えなさい。重力加速度 の大きさをgとする。 (1)物体を図1のように床の上に乗せる。 (a)物体にはたらく力のつりあいの式を作りなさい。 (b)作用反作用の関係にある力を答えなさい。 (c)物体の質量が m のとき,fs の力の大きさを求めな さい。 1 床 ft (図1) (2)図2のように,天井にばね定数 k の軽いばねの一端 を固定し,他端に質量 m のおもりを取り付けた。ば ねの自然長からの伸びを求めなさい。 k (3)図3のような質量 m の直方体がある。面Aの面積は Si, 面Bの面積はS2 である。 (a)床の上にAの面を下にして置くとき,床が受ける 圧力の大きさを求めなさい。 (b)床の上にBの面を下にして置くとき, 床が受ける 圧力の大きさを求めなさい。 m) (図2) 「A B (4)質量 m, 体積V の鉄球を軽い糸でつるし,つり下げ た状態で密度 o の液体の中に全体を沈めた。 (a)鉄球の密度を求めなさい。 (b)糸が鉄球を引く力の大きさを求めなさい。 (図3) (5)物体が空気中を落下するとき, 空気の抵抗力の大き さは物体の速さに比例し, その比例定数はkである。 質量 m の物体を落下させるとき, 物体の速さはやが て一定となる。その速さ(終端速度)を求めなさい。 (図4) 抵抗力 ku O- (図5)

回答募集中 回答数: 0
物理 高校生

問題とは直接関係ないのですが、(7)の図のx1→x3→x4で、等速度運動しないのはなぜか教えて頂けませんか? 静電気力が小さくなることで、x1以降は摩擦力が静電気力と釣り合うようになり、加速度が0になることから等速度運動する、という風にはならないのでしょうか?

(1) nまでは等速度運動だから、力がつり合う。点Oから離れるにしたが。、 て左向きの静電気力 qEが増し、それに応じて静止摩擦力が右向きに地」 ていく。やがて、おでは最大摩擦力umg に達する。そこでの電場の強さ E= より 電気 13 静電気·単振動 47 HE 13 静電気·単振動 水平右向きにx軸をとり,原点を0 電場 電場 とする。水平方向に -ax で表される -出mg aq q*a =mg 電場(電界)をかける(xは座標で, aは 図P 正の定数)。そして,水平右向きにベ ルトを一定の速さで動かす。正電荷q は向きを含めて 一g"axと表せる(ばねの弾性力と類似)ので ド=-aqx + mmg ベルト (2) Pはベルトに対して左へ滑るので、動摩擦力は右向きに働く。静電気。 を帯びた質量 mの小物体Pを点Oの位置でベルト上に置くと,Pは F=-aq (x-mg) aq (3) 上式を変形すると ベルトに対して滑ることなく動き始めた。Pとベルトの間の静止摩 これよりPはェ= mg(< x)を振動中心として単振動をすることが aq 擦係数をL, 動摩擦係数を μ(<μ)とし, 重力加速度をgとする。 ベルトは帯電しないものとする。 分かる(復元力の比例定数K=aq)。 もちろん。振動中心で最大の速さとなるので 出mg aq Pはやがて位置:x=(1) ]で滑り出す。 その後のPに働く合力F は,Pの位置xを用いて, F=(2) (4)単振動のエネルギー保存則(Fエッセンス(上)p79)より と表せる。Pはx=bで一瞬 静止した後,左へ戻り, 位置 x2=D (3)で最大の速さ Um=L(4) となる。x=bから x2に至るまでの時間は カ=D(5) である。その 後,Pは x =(6) で再び一瞬静止し, 右へ動くが, x4=(7) でベルトに対して静止し, 再び滑り出すまでには, ベルトの速さを (関西大+大阪大) K(b-xx)?= るV | aq = (b-mg aq V aq m (5) 右端から振動中心に移るまでの時間だから、周期Tの一である。 m- m Vとすると,tz=(8)の時間がかかる。 (6) は左端で、振幅A=b-xだけ、 中心xxの左側にあるので(次図を 参照) =-A= 2xーb=mg なお,(4)は、。=Ao =(bーx)·2x/Tとして求めてもよい。 Level(1), (2) ★ (3)~(6) ★ (7), (8) ★★ ーb aq 会 ( (7) Pは左端から右へ向かって速さを増していく。次図のように, ベルトの 速度Vと同じになるのは, 単振動の対称性から(ベルトに対して滑り始め た)位置xと振動中心をはさんで同じ距離だけ左に離れた位置 xx となる。 Point & Hint 力学としては,ばねに付けられた物体の, 動くべ ルト上での運動と同等である。 自然長 ma P V (2) Pはペルトに対して左へ滑る。 すると動摩擦力 の向きは…。 ベルト V Oms (3)~(6) (2)の合力Fの式から運動 (地面に対する運 動)が確定する。そして,いろいろな量が求められる。ん (7) Pの速度がベルトの速度と一致するのは…。 それまでの運動のもつ対称性 0 を利用したい。 単振動のエネルギー保存則で考えてもよい。振動中心から同じ距離だけ 離れた位置での単振動の位置エネルギーは等しいから, 運動エネルギーが (つまり速さが)等しい。 次図より . = 2xーx= aq mg (2h-) X- = Xー A A 左端 中心 右端 b -V ロー 赤点線は単振動 黒点線は等速V (8) xに達するまでは, Pはベルトに対して左へ滑り, (2)の「Fに従う単振 動であったが、いったんベルトに対して止まると,静止摩擦力に切り替わ り,Xに達するまではベルトと共に等速Vで動く。 ね= 2(x- x) V X-X 2mg ミ) agV

回答募集中 回答数: 0