学年

教科

質問の種類

数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

写真の問題の赤線部についてですが、なぜn≧1と書く必要があるのでしょうか? その上の行でΣとCをすでに使っていますが、ΣとCのnの部分は定義から、n≧1だから、赤線部の前にn≧1という条件はすでに考慮してるのではないのでしょうか?解説おねがいします。

基礎問 P 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して,2"> n を示せ. AOAO k-1 (2) 数列の和 S. = 2 (1) anで表せ△〇〇〇 k=1 (3) lim Sm を求めよ. △△△△ n→∞ |精講 (1) 考え方は2つあります。 I. (整数)” を整式につなげたいとき, 2項定理を考えます. PROCE (数学ⅡI・B4 ⅡI. 自然数に関する命題の証明は帰納法 (数学ⅡI・B 136 Fet (2) Σ計算では重要なタイプです. (数学ⅡB 120 S=Σ(kの1次式) k+c (r≠1) は S-S を計算します. (3) 極限が直接求めにくいとき, 「はさみうちの原理」という考え方を用います. bn≦an≦en のとき limb=limcn = α ならば liman=α n→ 00 n→∞ n→∞ この考え方を使う問題は,ほとんどの場合,設問の文章にある特徴がありま す. (ポイント) どういう意味? 解答 (1) (解I)(2項定理を使って示す方法) n (x+1)=2nCkck に x=1 を代入すると k=0 2"=nCo+nC1+nC2+..+nCn ¹) n=1 F²³5, 2²nCo+nC₁=1+n>newhere 2">n ( 解ⅡI) (数学的帰納法を使って示す方法 ) 2"> n (i) n=1のとき 左辺=2,右辺=1 だから, ①は成りたつ

回答募集中 回答数: 0
数学 高校生

22. 1.2両方この記述でも大丈夫ですか??

42 基本例題 22 条件つきの等式の証明 a+b+c=0のとき, 次の等式が成り立つことを証明せよ。 (1) a²+26²-c²+3ab+bc=0 (2) a³ + b³ + c³ = -3(a+b)(b+c)(c+a) 指針a+b+c=0は条件式であるから, 文字を減らす方針で進める。 すなわち, c=-a-b[=-(a+b)] として, cを減らす。 【CHART 条件式 文字を減らす方針で使う 解答 (1) a+b+c=0より, c=-(a+b) であるから a²+26²2-c2+3ab+bc=a²+26²-(a+b)2+3ab-b(a+b) =a²+26²-(a²+2ab+b²) +3ab-ab-b2 =0 (2)a+b+c=0より, c=-(a+b)であるから a³ + b³ + c³+3(a+b)(b+c)(c+a) このとき, a,bは自由に動くことができて, この問題は, a,b,cの3文字から 2文字についての等式の証明になる。 (2) 前ページ例題21の指針3の方針。 A=B⇔A-B=0 から,a3+b+c3+3(a+b)(b+c)(c+α)=0を証明する。 HAL =a³+b³—(a+b)³ +3(a+b)(b¬a−b)(-a-b+a) =a³+b³-(a³+3a²b+3ab²+b³)+3ab(a+b) =-3a²b-3ab²+3a²b+3ab² =0 したがって a³+b³+c³=−3(a+b)(b+c)(c+a) 本 ..40 基本 0 a b a b (2) 答 b <c=-a-b=- (a+i) えに <{-(a+b)}^=(a+b) =(a+b)-3ab(a+b を利用してもよい。 につ a b (a+b) を展開せずにゆえ a³ +6³ 検討 条件式を丸ごと利用する a+b+c3=3abc すなわち+b+c-3abc=0を証明すればよい。 ここで, p.10で取りチー a+b+c=0 より, a+b=-c, b+c=-a,c+α=-bであるから, (2) では た因数分解の公式5を利用すると,次のように、条件式a+b+c=0を丸ごと代入できる。 a³ + b³ + c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)-0 こ 考

回答募集中 回答数: 0
数学 高校生

平面ベクトルについて質問です。 【2】でf(-1)f(1)≧0となっていますがどちらもせいになる場合、どこかでy軸0と交わる点が出てくるのではないかと思いました。教えて頂きたいです。

東京 新課程 リードα 化学量 322 数学B 91-402 今生 (nb+mc)-(-mb+nc)=0 Tok -mn/bf-(m²-n²) b-c+mnlcf=0 であるから 6-c=0 (2) AEL DF であるから よって ゆえに <ポイント> 文字をおいて 式をたてる m0.n>0.man であるから 7. であるから AE-DF=0 EX △ABCの辺BC, CA, ABの中点をそれぞれ D, E, Fとする。 △ABCの内部に点をとり 分 OA, OB, OCの中点をそれぞれP, Q. Rとするとき. 3 直線 DP. EQ, FRは1点で 22.0t 17 わることを証明せよ。 OA=4,OB=6, OC = とすると (m²-n²)b-c=0 00+ OE- OF_a+b 2. 2 OP-4.00-4. OR- OT=OE+0Q 2 ABLAC よって,線分 DP, EQ. FR の中点をそれぞれS, T. Uと すると OU_OF+OR 2 OS=OT-OU 05-06+0³ 16+c+2)_+6+è OD+OP OS= 2 --- 4 a+b+c <p = -1/2) = ²² 4 1 (ētā + (+5+)_+6+à OR=rOA+(1-1)0Q ****** 2 うちけん =rat1246..... ① 条件から OP=ta, OQ=-1-6 QR: RA=r: (1-r) (0<r<1) とす ると 4 PR: RB=s: (1-s) (0<s <1) とすると OR=(1-s) OP+sOB =(1-s)ta+sb 0 ○ ←AE-DF 1 (m+n)² (nb + m²) -(nc-mb) -045 (nb+mc) (-mb+nc)- の位置を B b B・ ゆえに よって, 線分 DP, EQ, FR のそれぞれの中点は一致するから. ←3点S, T.Uの位置 ベクトルが一致。 3 直線 DP, EQ, FRは1点で交わる。 P EX 平面上に長さ3の線分 OA を考え, ベクトル OA をaで表す。 0<t<1 を満たす実数に対し 18 (東北大) このとき,どのように0をとっても OR と AB が垂直にならないようなtの値の範囲を求めよ。 a 求めたい すようにとり。 B を OB = で定める。 線分 OBの中点をQとし,線分 AQ と線分BP の交 点をRとする。 F Q ( A D R. DE PQ 12 長さが同じ 平行であるこ てから FA なす角が< 8 <180° であるから 60 であるから. ①.②より 1-1=s =(1-s) t. 2 (0<t<1) [HINT] QR: RA=r: (1-7). PR: RB=s: (1-s) とし OR を2通りで表 す。 OR·AB=(2—¿ª+¹−16)·(6−à) axb =2²7 (−tlāß+(1−1)|B³+(2+−1)ã•b} =2-{-9t+4(1-t)+6(2t-1)cos B} =26(2t-1) cose-13t+4} 2-1 0 ゆえに 求める条件は、任意の8 (0° < 8 <180°) に対して、 ここで 0<t<1であるから +1a1-3. 151-2 のとき 62t-1) cos 0-13t+4≠ 0 が成り立つことである。 -1<p<1 ここで COSB=かとすると よって、f(p)=6(2t-1)p-13t+4 とすると. -1<p<1を満た ゆえに よって ゆえに ←△AOQBPに ついて、メネラウスの定 理を適用してもよい。 OB AP 器・照·賜=1 BQ RA よって すすべてのかについてf (p) = 0 が成り立つようなt の値の範囲 を求めればよい。 11/1/2のと 0<t</1/23 1/12 <t<1との共通範囲は st</, /<<t<1 2 [1] [2] から 求める t の値の範囲は 一同じ符号ならok、 P(-1). 2 1-t FOR 122=1 f(p=-12 であるから.f(p)≠0 を満たす。 [2] OKI</1/11/12 <<1のとき f(p) は1次関数であるから, -1<p<1を満たすすべてのか についてf(p) 0 が成り立つための条件は f(-1)ƒ(1) ≥0 (-25t+10) (-t-2) 20 (5t-2)(+2)≧0 ts-2. / st 1章 OR=OA+2(1-1)0Q +2(1-1) st<1 ] [平面上のベクトル) QR RA=1:2(1-t) raj U EX ta+(1-1)5 2-1 ←0°<8180°のとき -1<cos@<1 ←f(-1)=0 または f(1)=0 または 「f(-1) f(1) が同符号」

回答募集中 回答数: 0