学年

教科

質問の種類

英語 高校生

カッコで囲んだとこの英文の1つ目のandからの訳がどうして2枚目のようになるのか教えてください。 2枚目のどんな疑問が重要か〜の次のとこからです

ample practices varied across time and place. The truth is that we about what preliterate societies knew or believed. But they left behind *. evidence of their attention to the movements of the Sun and the phases of the Moon. And we can be sure that whatever questions they asked of the heavens were very different from those that motivate space exploration today. (A) rotic othe In reality, the difference between ancient and modern knowledge systems is more qualitative than quantitative; it is not about how much is known, but about what questions are important and about the acceptable ways of asking and answering those questions. And while we may not easily be able to slip between our modern worldview and those of others, we can nonetheless attempt to do so by asking not what ancient people knew about the world, but what their questions were when they looked at it. If we do this in the case of Mars, examining a few of the earliest known examples from around the world, we can see how sky knowledge was considered important to the functioning of the state whether it was *astrological knowledge in the service of good governance, or knowledge of bloodlines and relationships with the gods and other sky entities, which was used (B) - verdd

回答募集中 回答数: 0
物理 高校生

⑷でどうしてX軸方向の運動方程式しか成り立たないのか、Y軸方向のことは考えないのかというのと、 どうして重心で考えているのかがよくわかりません

34円運動 万有引力 ◇47. 〈半円形状の面にそった円運動〉 図のように, 半径Rの半円形のなめらかな面を もつ質量Mの台が水平でなめらかな床面上に固 定されている。 半円形の端点Aから質量mの小 A m 0 R 0 物体を静かにはなす。小物体の位置を,小物体とRsing 円の中心を結ぶ線分と水平線 OA がなす角度 0. 0で表す。 また、床面には水平方向右向きにx軸 をとり、半円形の最下点の位置を x=0 とする。 重力加速度の大きさをgとして,次の問いに答え よ。 (1) 小物体が角度0の位置を通過するときの速さ」 を求めよ。 M x 0 (2) このときの小物体が台から受ける垂直抗力の大きさ N と, 台が床面から受ける垂直抗力 の大きさFを,R, M, m, sine, gの中から必要なものを用いて表せ。 また, 横軸に角度 0,縦軸にNとFをとり, Nは実線, Fは破線としてグラフをかけ。 グラフでは, とし、適切な目盛りを振ること。 次に,台の固定を外して小物体をAから静かにはなす。 M = =4 m >+ (3) 小物体が角度の位置を通過するときの速さと,台の速さ Vを,R, M, m, sin 0, X gの中から必要なものを用いて表せ。 このときの小物体の水平方向の位置 x2 と, 半円形の最下点の水平方向の位置 X を R, M, m, cose を用いて表せ。 〔23 電気通信大] 必解 48. 〈ケプラーの法則〉

未解決 回答数: 1
数学 高校生

東工大数学 採点していただきたいです。 途中まで(ノートの左下)で間違えています 50点中何点もらえますか?

24 する。 辺ABを xl-x (0≦x<l) の比に内分する点Pと,辺ACをy: l-y (0≦y<1> の比に内 分する点Qをとり、線分BQ と線分 CP の交点をRとする。 このとき, RがAM に含まれるような (x,y) 全体をxy平面に図示し, その面積を求めよ。 (ただし、道 AB. 辺ACを0:1の比に内分する点とは,ともに点Aのこととする。) 2003年度 (3) △ABCにおいて, 辺ABの中点をM. 辺ACの中点をとする。 ポイント 前半は、平面ベクトルの典型問題である。 平面上のどのようなベクトルも その平面上の2つのベクトルa, a≠0. b=0, ax b) を用いて, Bb (a. B は実数) の形に表されること, そしてその表し方は1通りであることは重要な事実であ る。また、△ABCの間および内部にある点Pは, AP=αAB+ BAC (a+β≦1,420 B20) で表されることもマスターしておくべき基本事項である。 520) 不等式の表す領域の図示と面積を求めるための定積分計算である。 解法 △ABQにおいて, AQ=yAC (0≦y<1) であるか ら,実数s を用いて AR = (1-s) AB+syAC (0≦s≦1) ...... ① と表せる。 また, ACP において, AP=xAB (0≦x<1) であるから実数を用いて AR=AB+(1-1) AC (0≦t≦) ....... ② と表せる。 ABとACは1次独立 (AB AC. MEAN AB≠0. AC ±0) なので ①②より したがって. ①より AR=(1-1-4) AB+1-5 1-xy ここで -xyAC= x (1-y) 1-xy B 1-s=tx, sy=1-1 が成り立つ。 0≦x<1,0≦y<1に注意して, この2式からtを消去すると 1-1 E'S (1-x) -AB + Level B M O P _y(1-x) -AC 1-xy x(1-y) 1-xy とおくと AM= y (1-x) 9= 1-xy AM-AR AN-ACCA& AR=pAB+qAC=2pAM+2qAN となり、点Rが△AMN に含まれるためには xy- 2p+2q≦1④ が成り立つことが必要十分である。 ③を用いると, ④ ⑤ はそれぞれ y(1-x)206 1-xy x+y-2xy=-xy = 1-xy 0≦x<1,0≦y<1より. ⑤'は成り立つ。 また, 0≦x<1,0≦y<1に注意して, ④'を変形す ると よって, 0≦x<1,0≦y<1のもとで, ④’を満たす 点(x,y)をxy平面に図示すると、右図の斜線部 分(境界はすべて含む)になる。 すなわちy=1/1 23 2p20. 2q205062 [注]不等式 (x-2)(x-2/31) 2010/19 リー = x (1-y), -≥0. 1-xy 5- £² (1.-7. 3) 4 S= 9 2 ---- (10)+ §3 平面図形 129 UN + 1/23 を描く。 次に、この境界線で区切られた3つの部分の1つを選 y= の表す領域を図示するには、まず境界線 (x-2)(x-2)=1/ *3 び、その中の1つの点の座標を不等式に代入してみて、成り立てばその点を含む部分に 斜線を施し(同時に境界線をまたいだ隣の隣にも斜線を施す)。 成り立たなければ隣の 部分に斜線を施す。 正領域∫ (x,y) > 0.負領域f (x,y) <0は境界線をまたいで交互に 現れることを利用するのである。 さて 求める面積をSとすると

回答募集中 回答数: 0
英語 高校生

この問題の答えを教えてください🙇 Elixir3三訂版です。

26 29 27 28 UNIT 5 不定詞 ① Reading 44 Grammar & Expression Writing /28 (268 words) 18 Arda Tur 8 宇宙エレベーター (イメージ) Cross Reference 12 Listening 8 Reading 29.08 People have always been fascinated by the stars. In the late 1950s, we began using 929 916 Jeriw blb rockets to explore space. Today, rockets remain the only method for space travel. However, some scientists and companies are discussing other ways to travel into space. They are even suggesting that it may be possible to build a space elevator. Such an elevator would be ideal to take people or equipment to a satellite in Earth's vs m orbit, the moon, or even Mars. They believe it would be expensive to build, but cheap oved) snosili saporio of bedes bi 2515JmT: 63 to operate. It would be 3,000 times cheaper than rocket travel, and it would also be Jodm Tolvo Station and Tokyo Joy trw 59728 safer. These are all positive reasons for trying to construct a space elevator. Obayashi Corporation is a Japanese company that built Tokyo Skytree, and improved the Golden Gate Bridge in America to protect it against 10 earthquakes. It has now promised to make a space elevator, which will allow people itsetovnoj anti mon doiniqo ono ar jedW (1) to go to a space station. Currently, the firm is researching the materials and costs. in einbiguier Obayashi Corporation wants to complete its project by 2050. Insoningie pig sabi gdT Most experts say that such a space elevator is not realistic. They also say it biq SILP 10 would be too would be too expensive. Other experts, however, think that a space elevator will be 15 built one day. It may all depend on human imagination and ambition. In fact, when in 1961 President John F. Kennedy announced the dramatic and ambitious goal to send an American rocket to the moon, many people doubted it could be done. But his goal was achieved in July, 1969, when the astronaut Neil Armstrong stepped onto the Moon's surface. ange Total ⑨25分 0:40 大意把握 SW.Y 問1 次は ア. イ. ウ I 問2 20 E て 19

回答募集中 回答数: 0
1/6