学年

教科

質問の種類

物理 高校生

Ⅱの(4)をsin cos関数を使って解いたのですが答えが合いませんでした。どこが間違っているのかと正しい解法を教えて頂きたいです。お手数お掛けしますが宜しくお願い致します。

1/25 4/29 pooooooo 33 単振動 ばね定数のばねを鉛直に立て,上端に質量 M の板を取り付け、静止させる。そして,質量mの 小球をこの板の上方んの高さから静かに落下させ る。 重力加速度をg とする。 I. 物体が板と弾性衝突をする場合について (1) 衝突により小球がはね上がるためには,m とMの間にどのような関係が必要か。 33 単振動 99 mmmmm M (2) 衝突後,板ははじめの位置より最大どれだけ下がるか。衝突は 1度だけとする。 II. 小球が粘土のようなもので,衝突後, 板と一体となって運動する 場合について, (3)衝突の際,失われる力学的エネルギーはどれだけか。 (4) 板ははじめの位置より最大どれだけ下がるか。 (東工大) Level (1) (2),(3)★ (4) ★★ Point & Hint TS (1) (3) とくに断りがなければ, 衝突は瞬間的なものと考える。 その場合、重力の 力積は無視でき, 衝突の直前, 直後に対して運動量保存則を用いてよい。 弾性衝 突では全運動エネルギーが保存されるが, 反発係数 (はね返り係数) e=1 として 扱ったほうが計算しやすい。 (2), (4) ばね振り子のエネルギー保存則には,次の2通りの方法がある。 A: 1/12mu2+1/21kx2=定 (xは振動中心からの距離) 単振動の位置エネルギー B: 1/12mo+mgh+1/21kx定(xは自然長からの距離) 弾性エネルギー 12/23kx2 のもつ意味の違いと、xの測り方の違いを押さえておくこと。多くの場 合, A方式の方が計算しやすいが,(4)では注意が必要。

回答募集中 回答数: 0
物理 高校生

問2を教えていただきたいです🙇 小物体が左に進んでいて台が右に進んでいるという考えは間違っていますか??

第2問 次の文章 (A・B) を読み、後の問い (問1~4) に答えよ。 (配点 25) A 水平な床面上をなめらかにすべることができる質量Mの台がある。 図1のよ うに、この台上のAB間は水平になっており、 BC 間は円弧で,その円弧の中心 Oは点Bの真上にあり,∠BOC=90°である。 台上の AB間, BC 間はともにな めらかである。静止している台上の端点Aに質量mの小物体を置き, 小物体に 点Bに向かって初速度vを与えたところ, 小物体は点℃まで上昇し,点Cか ら面に沿って下降した。 ただし, 小物体と台の運動は同一鉛直面内で行われる ものとし、 水平方向の速度は図1の右向きを正とする。 うんほよりmmo-mricm+Mo 小物体 m Vo T ON e 文 問1 正しいものを、次の①~④のうちから一つ選べ。 mino= (mtM C自体はとまってるから。 mvo=m+M)V 小物体が点Cに達したときの床面に対する小物体の速度を表す式として 台 T M B 床面 図 1 7 M m ① - Vo Vo m M M ④ Vo m+M m m+M Vo 問2/ 小物体が点Cに達した後,面に沿って下降して,台のAB間をすべって いるときの床面に対する小物体の速度を表す式として正しいものを、次の mn'+M. MMD ①~⑧のうちから一つ選べ。 8 mvo= 1 vo m- -M 2M 2m -Vo (3) Vo m m+M m+M ⑤ m-M 2M Vo Vo ⑦ m-M Vo m m M M うんどう量保存則より小物体 mammi 台 Ma. MV m+M 2m なめらかの台静止 ひ M (第2回-8) m+M-M in Va ・ぴ mtM M -200m+M M -1) w M-m-M mtm m mno=MV_mn Mm mtml M M m+M 0

未解決 回答数: 1
物理 高校生

⑷でどうしてX軸方向の運動方程式しか成り立たないのか、Y軸方向のことは考えないのかというのと、 どうして重心で考えているのかがよくわかりません

34円運動 万有引力 ◇47. 〈半円形状の面にそった円運動〉 図のように, 半径Rの半円形のなめらかな面を もつ質量Mの台が水平でなめらかな床面上に固 定されている。 半円形の端点Aから質量mの小 A m 0 R 0 物体を静かにはなす。小物体の位置を,小物体とRsing 円の中心を結ぶ線分と水平線 OA がなす角度 0. 0で表す。 また、床面には水平方向右向きにx軸 をとり、半円形の最下点の位置を x=0 とする。 重力加速度の大きさをgとして,次の問いに答え よ。 (1) 小物体が角度0の位置を通過するときの速さ」 を求めよ。 M x 0 (2) このときの小物体が台から受ける垂直抗力の大きさ N と, 台が床面から受ける垂直抗力 の大きさFを,R, M, m, sine, gの中から必要なものを用いて表せ。 また, 横軸に角度 0,縦軸にNとFをとり, Nは実線, Fは破線としてグラフをかけ。 グラフでは, とし、適切な目盛りを振ること。 次に,台の固定を外して小物体をAから静かにはなす。 M = =4 m >+ (3) 小物体が角度の位置を通過するときの速さと,台の速さ Vを,R, M, m, sin 0, X gの中から必要なものを用いて表せ。 このときの小物体の水平方向の位置 x2 と, 半円形の最下点の水平方向の位置 X を R, M, m, cose を用いて表せ。 〔23 電気通信大] 必解 48. 〈ケプラーの法則〉

未解決 回答数: 1
1/18