学年

教科

質問の種類

物理 高校生

⑶についてです。黒く書いたように6m延長させるのはなぜ間違ってるのですか?なぜ上下逆転するのですか?

170 W章 波動 基本例題44 横波の伝わり方 図は,x軸上に張られたひもの1点Oがy[m〕 単振動を始めて, 0.40s 後の波形である。 0.20 (1) 振幅, 波長, 振動数, 波の速さはそれ ぞれいくらか。 (2) 図の0,a,b,cの媒質の速度の向 きはどちらか。 速さが0の場合は 「速さ」と答えよ。 両 (3) 図の時刻から. 0.20s後の波形を図中に示せ。 指針 (1) 周期は、波が1波長の距離を 進む時間から 0.40s である。 振幅, 波長をグラ フから読み取り, 振動数, 波の速さを求める。 6 (2) 横波では, 媒質の振動方向は波の進む向き に垂直であり、媒質はy方向に振動している。 (3) 波は1周期の間に1波長の距離を進む。 解説 (1) グラフから読み取る。 振幅 : A = 0.20m, 波長 : 入=4.0m 振動数, 波の速さは, 振動数:= 1/72= 波の速さ : v=fd = 2.5×4.0=10m/s (2) aとcは振動の端なので速さが0である。 Oとbの向きは,微小時間後の波形を描いて調 べる。 0: 上,b:下,aとc: 速さ 0 ST 1 0.40 =2.5 Hz I 08.0 0 JA 20 -0.20 a y[m〕↑ 0.20 0 y[m] 0.20 C HA wazlo -0.20 基本問題 334, 335,336 Say 6 7 FAX 3 微小時間後 I 52 8 HOTO 4 5 6 7 8 x[m] 133-0.20 a (3) 周期が 0.40sなので, 0.20s 間で波は図の状 R 態から半波長分を進む。 x (m) I に ** XX I I 6 7 8 x〔m〕 0 [Point 媒質の速度の向きを調べるには, 微 小時間後の波形を描くとよい。 SHU

回答募集中 回答数: 0
物理 高校生

赤線のところが分かりません。なぜ254~314s間に供給された熱量を考えるんですか?その後に「水と容器の温度が0℃から20℃まで上昇する」と書いてあるならそれなら32sから0℃なんだから時間の区間は32sから314sですよね?

発展例題23 氷の比熱 質量 400gの氷を熱容量120J/Kの容器に入れ,容 器に組みこんだヒーターで熱すると,全体の温度は 図のように変化した。 熱は一定の割合で供給され, すべて容器と容器内の物質が吸収したとし、水や氷 の水蒸気への変化は無視できるものとする。 また, 水の比熱を4.2J/ (g・K) とする。 (1) ヒーターが供給する熱量は毎秒何Jか。 (2) 氷1gを融解させるのに必要な熱量は何Jか。 (3) 氷の比熱は何J/ (g・K) か。 指針 (1) 254s 以降の区間では、 氷はす べて水に変化している。 水と容器の温度上昇に 必要な熱量から, ヒーターが毎秒供給する熱量 を求める。 E (2) 温度が一定の区間 (32~254s) では,供給さ れた熱量はすべて氷の融解に使われる。 これか ら, 氷1gの融解に必要な熱量を求める。 (3) 氷と容器の温度が上昇する区間 (0~32s) で, 温度上昇に必要な熱量から, 氷の比熱を求める。 解説 (1) 水と容器をあわせた熱容量は, 400×4.2 +120=1.8×103J/K 254~314sの間に供給された熱量で, 水と容器 の温度が0℃から20℃まで上昇するので, ヒー ターが毎秒供給する熱量をQ〔J〕 とすると, ↑ 温度 [℃] 201 0 -20 /32 254314 時間 (s) (1.8×103)×(20-0)=Qx (314-254) Q=6.0×102J (2) 32~254sの間に氷はすべて融解した。 氷1 gを融解させるのに必要な熱量をx [J] とすると, 400× x = ( 6.0×102) × (254-32) 3/9070 x=3.33×102 J 3.3×102J (3) 氷の比熱をc[J/ (g・K)〕 とすると, 氷と容器 をあわせた熱容量は, 400×c +120〔J/K] 0~32s の間に供給された熱量で, 氷と容器の温 度が-20℃から0℃まで上昇するので, ( 400×c +120) x{0-(-20)} =(6.0×102) × ( 32-0) c=2.1J/(g・K)

回答募集中 回答数: 0
物理 高校生

⑴なのですが、距離が5mとして計算されている理由が分かりません。OQ+QP+PQが距離だと思ってしまいます... 教えてください。質問の意味が分かりにくかったら言ってください💦

発展例題2 等加速度直線運動 斜面上の点Oから, 初速度 6.0m/sでボールを斜面に沿 ONE 指針 時間t が与えられていないので、 「v²-v2=2ax」 を用いて加速度を求める。 また, 最高点Pにおける速度は0 となる。 v-tグラフ を描くには、速度と時間との関係を式で表す。 解説 (1) 点 0, Qにおける速度, OQ 間 の変位の値を 「v²-v2=2ax」 に代入する。 (−4.0)²-6.02=2×a×5.0 a=-2.0m/s2 って上向きに投げた。 ボールは点Pまで上昇したのち、下 降し始めて, 点0から5.0mはなれた点Qを速さ 4.0m/s 速さ 4.0m/s で斜面下向きに通過し, 点Oにもどった。 この間, ボール は等加速度直線運動をしたとして, 斜面上向きを正とする。 (1) ボールの加速度を求めよ。 LOSUHO SAY^82A (2) ボールを投げてから, 点Pに達するのは何s後か。 また、OP間の距離は何mか。 (3) ボールの速度と, 投げてからの時間との関係を表す グラフを描け。 (S) (4) ボールを投げてから, 点Qを速さ 4.0m/sで斜面下向きに通過するのは何s後か。 また, ボールはその間に何m移動したか。 v[m/s〕↑ J16.0 0 SUTA - 4.0 - 6.0 085.0m 発展問題 24, 25,26 1 23 P TUTS MU 60m/s. 550GS OP間の距離 KOBRAJ PQ間の距離 4 25 6t[s]

解決済み 回答数: 1
1/3