学年

教科

質問の種類

物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0
物理 高校生

この問題の解き方が下の解説を読んでも理解が出来ません💦 教えてください。よろしくお願いします。

空気の抵抗は JK=0 U=mgh 例題2 ばねと力学的エネルギーの保存 軽いばねの一端を天井に固定し, 他端に質量mの物体をつるすと, ばねは自然長からだけ伸びてつり合った。 この物体を, ばねの自然長の位置まで手で持ち上げて、静かに手をはなした。 重力加速度の大きさをgとし, 重力による位置エネルギー の基準面は、ばねの自然長の位置にとるものとする。 (1)このばねのばね定数を求めよ。 (2)ばねの自然長からの伸びがxになる点を通過するときの物体の速さがであるとする。このときと手をはなした直後で, 力学的エネルギーは保存される。 力学的エネルギー保存の式を書け。 (3)つり合いの位置を通過するときの物体の速さを求めよ。 (4) 物体が最下点に達するときのばねの伸びを求めよ。 解説 (1)このばねのばね定数をkとすると,図のBのときの 物体にはたらく力のつり合いより, B mg mg = kl よって,k= -12 mul = 0 になるため (2)図のAとCについて考え,k= 0+0+0= 1 2 m² mỏ – mgx + (3) 図のCについて, x=1として,(2)の式に代入すると, mgを を代入すると, 0000000 自然長 0 mg x² 21 K=0 つり合いの U = 0 + 0 位置 kl 00000000 Beet K=1/2m02 U=-mgl+1/k12 CK=1/23 mv2 U= mgx+1/2/kx2 0=1/2m² -mv²- mgl + -mgl 2 Vo mg x さは基準 となる。 v>0, v=√gl (4)図のDについて,求めるばねの伸びをひとすると, 最下点でv = 0 だから,(2)の式に代入すると, 最下点 K = 0 U= -mgl' + kl² 0 = - mgl' + mg_ 91,2 l' ≠ 0 だから, l'=21 21

未解決 回答数: 0
物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0
物理 高校生

202の(3)を教えてください。(2)と同じになると思いました。

こり、 という. 分子内部での電子 より電荷のかた この現象を利用している.また, (3) )のかたよりによってお 200 (クーロンの法則) 次の問いに答えよ. クーロンの法則の比例定数はk=9.0×10N・m²/C2 とする. (1) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cを3.0m離しておくときの静電気力の大きさ は何N か. 20×10-12 12×1.3×101 1.8×10-2N (2) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cの間に0.20Nの力がはたらいた. 点電荷 間の距離は何か。 =9.0×109.3.0×106×6.0×10%= 390x 10'm 3点電荷71=3.0×10 °Cと点電荷g2 を 1.0m離しておいたら270-Nの力がはたらい た点電荷Q2の電気量は何Cか. 9.0×104×3.6×106Q2=27×10-3 H Q2 28×6-3 9.5×10°×3×107 練習問題 A 201(クーロンの法則)+3.0×10 C, -1.0×10-Cの電荷をもつ同じ大きさの2つの小さな 金属球が0.30m離れた位置におかれている。 クーロンの法則の比例定数を9.0×10°N・m²/C2 とする. (1) 2球が互いに及ぼしあう力の大きさは何Nか、またそれは引力か斥力か. 次に2球をいったん接触させた後,再び 0.30m離した. (2) 各球のもつ電荷はそれぞれ何Cか. (3)このとき、2球が互いに及ぼしあう力の大きさは何Nか.またそれは引力か斥力か. 202. (静電誘導と誘電分極) 材質と大きさが同じで、電荷をもっていない2つの金属球A,Bに 帯電体Cを近づけて, 図のように次の順に操作をするとき, 金属球の表面に現れる電荷の分布を 図に示せ. C A B (1) 接触しているA,BのAに負の帯電体Cを近づける. (2) Cを近づけたまま, AとBを少し離す. (3)(2)の状態から Cを十分遠くに離す. B (2) (4)(3)の状態から, A, B を十分遠くに離す. A B A,Bを不導体(誘電体)でできた球D,Eにかえて, (3) 上の(1)~(3)と同じ操作を行う. B (5) (3)のとき,D,Eの表面に現れる電荷はどうなるか. (4) 文章で答えよ.

回答募集中 回答数: 0
物理 高校生

(f)なのですが、Iが正なのを考慮していると思うのですが、各電圧の正負がいまいちわかりません。詳しく解説お願いします。

東京工業大 東京工業大 問題 25 27 ロックどうし及び も傾くことはな =4の場合のみ T" 壁 2 (50点) 図1のように,長さの導線ab, cd と長さlの導線bc を直角につないで 作ったコの字形の導線 X を,水平に固定された直線状の導線Yにつり下げて 作った長方形の回路 abcd を考える。 Yの区間 adの一部は電池, 抵抗器, コイ ルスイッチで作った装置Zで置き換えることができ, Yの両端は絶縁されて いる。XはYを軸に滑らかに回転できるが, 平行移動や変形をしないものとす る。なお, YとZは動かない。 ab, cdの質量は無視でき, bcの質量はmであ り、重力加速度の大きさをとする。 また、磁束密度の大きさがBである鉛直 上向きの磁場が一様に存在している。 導線の太さと電気抵抗, コイル以外の自己 インダクタンス, 電池の内部抵抗, 空気抵抗はすべて無視できるものとする。 回路を流れる電流の正の向きをa→b c d と定める。また,aを通る鉛直 方向の直線と abがなす角を0とし,a から bに向かう向きが鉛直下向きのとき =0であり,ab→c→dの向きに回る右ねじが進む向きを正の向き と定める。さらに,Xの角速度をωとし, 微小な時間 At の間に が △0 だけ変 である。 化するとき,ω= も静止したまま At Asstod 9 を用いて表せ。 の大きさを, つなぐ糸の張力 Mがある値 M min 巨囲でどのように は 0 の値によっ Y d Z A AB a b m C X 図1 [A]図2のように、電圧Vの電池,抵抗値Rの抵抗器 スイッチSを使って 作 adの一部を置き換える。 スイッチをp側に入れると抵抗器のみ 2024年度 前期日程 物理 2024年度 前期日程 物理

回答募集中 回答数: 0
1/25