学年

教科

質問の種類

物理 高校生

(2)の緑のマーカのところで、急にsをかけたのって①のpsを使うためですか? そういう発想ってなかなか思いつかなくないですか?慣れですか?

114 第2編■熱と気体 リードC 基本例題 43 気体の状態方程式 239,240 解説動画 なめらかに動く質量 M [kg] のピストンをそなえた底面積 S[m²] の円筒 形の容器に, 1molの理想気体が入っている。 重力加速度の大きさをg 〔m/s'], 大 気圧を po [Pa], 気体定数を R [J/(mol K)] とする。 (1) 気体の温度が T[K] のとき,容器の底からピストンまでの高さ lはいくらか。 Do 1 mol 質量 M (2)加熱して気体の温度を To [K] からT[K] にした。 気体の体積の 増加 ⊿V はいくらか。 底面積 S 指針 ピストンが自由に移動できるから、気体の圧力』は一定である。 解答 (1) 気体の圧力を [Pa] とすると, カ ③式②式より Pos のつりあいより Post pAV=R(T-To) pS-poS-Mg=0 pS= pos+Mg 「pV=nRT」 より p(Slo)=RTo ①式を代入して (poS+Mg)lo=RT 4V= ......① R(T-To) T Þ Mg lo Mg PS ps __RS(T-To) To T DS RS(T-To) = [m3] RTo よってl= [m] poS+ Mg (2) 加熱の前後で 「pV =nRT」 を立てて 前:pSl)=RT 後: p (Slo+⊿V)=RT ......② ・③ poS+ Mg [参考] 圧力が一定のとき, 体積の変化量⊿V と温度の変化量4Tの間には、 「AV=nRAT」 の関係がある。 この関 係を用いて解いてもよい。

解決済み 回答数: 1
物理 高校生

このような問題の時、実線と破線どっちをみて計算すればいいんでしょうか❓

第7章 例題 32 波の要素 図は、x軸の正の向きに伝わる正弦波を示している。 実線は時刻 |t=0s, 破線は時刻 t = 1.5s の波形を示す。 ただし, この間にx=0m (1)この正弦波の波長入 [m], 振幅A [m], 周期 T [s], 波の速さ での媒質の変位y [m] は単調に0mから0.2mに変化している。 [m/s] を求めよ。 y[m] 197 解説動画 0.2 P Q R S 0 6 -0.2 (3)t=0s のとき, y 軸の正の向きの速度が最大の位置は0~Sのうちのどこか。 (2)t=0s のとき,振動の速度が0m/sの媒質の位置はOSのうちのどこか。 9 12 x[m] 指針(2),(3)媒質の振動の速さは,山や谷の位置で 0, 変位 y=0 の位置で最大となる。 速度の向きを知るには, 少し 後の波形をかいて, y 軸方向の媒質の変位の向きを調べてみる。 解答 (1) 図から入=12m, A = 0.2m 1.5秒間に波は 3.0m進むので == = 2.0m/s 距離 3.0. 時間 1.5 (moly 20 「p=fa」より振動数fはf= 1/2=2/20Hz 1=1/2=12 周期はT=- 1. = 6.0s 2.0 2) 媒質の振動の速度が0の位置は,谷の位置Pと山の 位置 Ro B) 変位 y=0 となっている位置 0, Q,Sで振動の速さ 0とS(下図)。 y は最大となるが, y軸の正の向きの速度をもつのは 少し後 -の波形 [POINT t=0 -- R S x 媒質の振動の速さ最大→変位が 0 の位置 媒質の振動の速さ 0 →山・谷の位置

解決済み 回答数: 1
物理 高校生

(ウ)の問題で L進めむごとに立方体の側面に衝突すると思うのですがなぜ1往復で1回しか衝突しないのですか?

247 気体分子の運動 一辺の長さLの立方体の容器に質 量m (kg単位) の気体分子がN個入っている。 図のように座標軸 をとるとき 以下の文中のに適当な式を入れよ。 (1) 1個の分子が図のなめらかな壁面Aに x方向の速度成分 vx で 弾性衝突したとき,分子の運動量の変化はアなので,壁 面Aに与える力積はイである。この分子は時間の間に ウ 壁面Aと衝突するので,この分子によって壁面Aが 受ける平均の力の大きさはf=エである。 24 L A (2) 全分子の速度の2乗の平均値を三平方の定理を用いて各成分の2乗の平均値で表 すと2x2+vy2+v22 であり, 等方性より全分子は平均的に2 ので,エを用いてN個の分子が, 壁面Aに与える力をを用いて表すと F=オ となる。したがって,壁面Aにはたらく圧力はp=カである。 (3)状態方程式 V =nRTとカを比較すると,分子1個の平均運動エネルギー Eはアボガドロ定数 N (物質量 n=N/Na),気体定数R, 絶対温度T を用いて表す ととなる。ここでN個の分子の質量が分子量Mo (g単位)であること を考慮すれば,キより分子の二乗平均速度は, Mo, R, T を用いて ク と表される。 例題 44259 '

解決済み 回答数: 1
1/59