学年

教科

質問の種類

物理 高校生

物理基礎の質問です 図aでは運動方程式、図bでは力のつりあいの式を立ててますが、なぜ運動方程式の物体Bについての式ではma=T-mgでT=mg▶︎ma=mg-mg▶︎ma=0にならないんですか? T=mgでつりあってるんじゃないんですか?

mのおもりBをつるした。 物 体Aと斜面との静止摩擦係数 μo, 動摩擦係数をμとして,次の問いに答えよ。 m B (1) 0 0 つまり板を水平としたとき, Bは下降した。 その加 速度の大きさを求めよ。 (2)001 のとき,Aが斜面下方へすべり始めた 。 M を求めよ。 (3)001のときのBの上昇加速度の大きさを求めよ。 「解説 (1) 図a で, 糸は軽いので, 両端の張力Tは等しい。 Aは「もうすべっている」 (p.41)ので, 動摩擦力μNを受ける。 〈運動方程式の立て方> (p.56)で. STEP Aは右向き, Bは下向きの 同じ大きさの加速度をもつ。 STER 2 図のように軸を立てる。 STEP 3 Aについて、 A μN a1 : 運動方程式: Ma1= +T-μN...... ① v : 力のつり合いの式: N = Mg... ② Bについて X: 運動方程式 ma」= +mg-T ③ ①+③より, N YA -X B 必ず 等しい Mg a₁ mg Tを消すためのおき, (M+m)a = mgμN まりの式変形♪ ②を代入して,aについて解くと, m-μM a₁ g 答 M+m 図 a 1 と同じ向きの力は 正, 逆向きの力は負 →ナットクイメージ m→∞にもっていくと, ag つまり, Bの自由落下に近づく 第5章 運動方程式 | 59

未解決 回答数: 1
物理 高校生

(2)の問題において、なぜ最初(Bをはなした直後)の力学的エネルギーA、Bを合わせて考えないといけないんですか?そのまま(1)で出したA、Bの値をイコールで結ぶだけじゃダメなんですか?

[リード C 基本例題 23 力学的エネルギーの保存 第5章■ 仕事と力学的エネルギー 49 104~108 解説動画 定滑車に糸をかけ, 両端に質量mおよびM (M> m) の小球 A, Bを取りつけた。 Aは水平な床に接し, Bは床からんの高さに保持 されて糸はたるみのない状態になっている。 いま, Bを静かにはな すとBは下降を始めた。 重力加速度の大きさをgとし,床を高さの 基準とする。 (1)Bが床に衝突する直前の A,Bの速さを”とする。 このとき, A, B がもつ力学的エネルギーはそれぞれいくらか。国十 72Bが床に衝突する直前の A, B の速さ”はいくらか。 2Bが床に衝突する直前のA,Bの速さ”はいくらか。 OBM m 指針 A, B には, 重力 (保存力) のほかに糸の張力 (保存力以外の力) もはたらくが, 張力が A, B にする仕事は,正, 負で相殺するので, 力学的エネルギーは保存される。 B:0+Mgh=Mgh 解答 (1)Bが衝突する直前の力学的エネルギ A:0+0=0/ ーはそれぞれ A, B をあわせて考えると、 全体の力学的 A: 2 1½ ½ mv² + 2+mgh B: 11/23 Mv² +0=Mv 0+Mgh= (2) 最初 (Bをはなした直後)の力学的 よってv= エネルギーは保存されるので =(1/12mo- mu2+mgh+1Mv2 2(M-m)gh M+m エネルギーはそれぞれ 110 解説動画

未解決 回答数: 0
物理 高校生

(1)Aがもう滑っていると分かるのはなぜですか? Bは下降したと書いてあるので、板を水平にした時AもBも滑り始めたと解釈したのですが、間違っていました。

M A チェック問題 1 運動方程式の立て方 右の図のように,傾きが 自由に変えられる板の上に質 量Mの物体Aを乗せ、軽い糸 でなめらかな滑車を通し質量 mのおもりBをつるした。 物 体Aと斜面との静止摩擦係数 Jo をμlo,動摩擦係数をμとして,次の問いに答えよ。 標準 10 分 m B (1) 6 = 0 つまり板を水平としたとき, Bは下降した。 その加 速度の大きさ a を求めよ。 (2)0 = 0 のとき,Aが斜面下方へすべり始めた。 μo を求めよ。 (3)001のときのBの上昇加速度の大きさを求めよ。 解説 (1) 図a で, 糸は軽いので,両端の張力Tは等しい。 Aは「もうすべっている」 (p.41)ので. 動摩擦力μN を受ける。 《運動方程式の立て方》 (p.56)で, STEP1 Aは右向き, Bは下向きの 同じ大きさαの加速度をもつ。 YA a₁ →IC N 必ず A 等しい UN STEP 2 図のように軸を立てる。 T Mg B. a₁ mg STEP 3 A について, x: 運動方程式: Ma= +T-μN...... ①図a y: 力のつり合いの式: N = Mg ② B について, 文に「一体となαと同じ向きの力は 正、逆向きの力は負 T を消すためのおき, →ナットクイメージ ∞にもっていくと, X: 運動方程式 ma = +mg-T...... ③ ① + ③より, (M+m)a = mgμN まりの式変形♪ ②を代入して,aについて解くと, m-μM a₁ = g 答 M+m a₁➡g つまり, Bの自由落下に近づく 第5章 運動方程式 59

回答募集中 回答数: 0
1/2