学年

教科

質問の種類

物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0
物理 高校生

(2)の問題において、なぜ最初(Bをはなした直後)の力学的エネルギーA、Bを合わせて考えないといけないんですか?そのまま(1)で出したA、Bの値をイコールで結ぶだけじゃダメなんですか?

[リード C 基本例題 23 力学的エネルギーの保存 第5章■ 仕事と力学的エネルギー 49 104~108 解説動画 定滑車に糸をかけ, 両端に質量mおよびM (M> m) の小球 A, Bを取りつけた。 Aは水平な床に接し, Bは床からんの高さに保持 されて糸はたるみのない状態になっている。 いま, Bを静かにはな すとBは下降を始めた。 重力加速度の大きさをgとし,床を高さの 基準とする。 (1)Bが床に衝突する直前の A,Bの速さを”とする。 このとき, A, B がもつ力学的エネルギーはそれぞれいくらか。国十 72Bが床に衝突する直前の A, B の速さ”はいくらか。 2Bが床に衝突する直前のA,Bの速さ”はいくらか。 OBM m 指針 A, B には, 重力 (保存力) のほかに糸の張力 (保存力以外の力) もはたらくが, 張力が A, B にする仕事は,正, 負で相殺するので, 力学的エネルギーは保存される。 B:0+Mgh=Mgh 解答 (1)Bが衝突する直前の力学的エネルギ A:0+0=0/ ーはそれぞれ A, B をあわせて考えると、 全体の力学的 A: 2 1½ ½ mv² + 2+mgh B: 11/23 Mv² +0=Mv 0+Mgh= (2) 最初 (Bをはなした直後)の力学的 よってv= エネルギーは保存されるので =(1/12mo- mu2+mgh+1Mv2 2(M-m)gh M+m エネルギーはそれぞれ 110 解説動画

未解決 回答数: 0
物理 高校生

ローレンツ力の分野です。(3)の解説の説明の交流電圧の角周波数が円運動の角速度と等しくなっていれば〰︎とあるのですがなぜそうなるのかわからないです。教えて頂きたいです。よろしくお願い致します。

【3】 正の電気をもつ質量の荷電粒子を加速する ことを考える。いま、半径 R,厚さの中空で半円 形の電極 AとBを図のように距離だけ離し、平面 上に置いた。ただし、厚さと距離はいずれも半 径Rより十分小さいものとする。2つの電極には図 の真上から見た図に対して紙面を裏から表に貫く方 向に磁束密度の大きさ B の一様な磁場がかかって いる。2つの電極ではさまれた領域 (Cとする) には 磁場はないものとする。電極AとBの間には交流 電圧V(f)=Vcos.ℓ,f が加わっており,t=0のと 真上から見た図) C A B P Be Bo /装置の\ 断面 CB 8E き、電極Aが高電位とする。 また領域Cの電場は一様とみなせるとしよう。 ABU Q FK この装置によって荷電粒子が加速されるようすは次のとおりである。 時刻 f=0 に電極 Aの右端の点Pに荷電粒子を置くと電圧V によって加速され、 電極 B に入る。荷電粒 子が2つの電極間の距離を移動する時間は十分短く、その間電圧は一定とみなせるもの とする。電極 Bに入った荷電粒子はローレンツ力を受けて円運動を行い,領域Cに達す るが、電極内の移動時間は領域を通過する時間に比べて十分長い。したがって、この 間に交流電圧の位相が180°変化していれば荷電粒子は再び電圧V によって加速され、 電 極Aに入って円運動を行い、領域Cに達する。 このように電極 A, B内で円運動した荷 電粒子は領域Cを通過するたびに加速をくり返す。以上を考慮して次の問いに答えよ。 (1) 時刻 f=0 電極 A の右端の点P に置かれた初速度の荷電粒子が電極 B に入ると きの速度を求めよ。 (2) 電極 Bに入った荷電粒子が行う円運動と円運動の向き(時計回り、反時計 回り)を答えよ。 (3)(2)の荷電粒子が電極 B内を通過する時間および領域Cに到達した荷電粒子を再 Vで加速するために必要な交流電圧の角周波数」をそれぞれ求めよ。 (4)(3)の荷電粒子が領域Cを通過して電極Aに入るときの速度 #27 電極 A内での円運 動の半径 および電極A内を通過する時間をそれぞれ で表せ。 (5)ここまでの考察により, 荷電粒子は領域Cを通過するたびに電圧Vでどんどん加速 されるが,加速に伴って電極 A, B内での円運動の半径がどんどん増大してしまい 荷電粒子が到達できる速度の上限が電極の大きさに依存してしまう。そこで,荷電粒子 の円運動の半径を保ったまま加速するには磁束密度の大きさと交流電圧の位相をどのよ うに制御すればよいか、答えよ。

回答募集中 回答数: 0
1/7