学年

教科

質問の種類

物理 高校生

どうしてマーカーの式になるのか教えて欲しいです🙇🏻‍♀️ (き)と(く)です。

14 2022年度 物理 立教大理 (2/6) VI.次の文を読み、下記の設問1.2に答えよ。 解答は解答用紙の所定欄にしるせ 電場や磁場の影響を受け, xy 平面上を運動する荷電粒子を考える。 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, 電気量g(g > 0) の荷電粒子が時刻 t = 0 に原点から初速度v=v, 0 ) ( 0 ) で運動を開始した。時刻でのこの粒子の位置は である。 (x, y) = ( い ) 立教大理(2/6) max= お ma か 2022年度 物理 15 となる。このことから,この粒子の運動は, by 座標系に対し一定の速度 (きく で運動する観測者から見ると円運動であることがわかる。 この粒子が xy 平面上に描く軌 道をCとする。 また, 質量m 電気量gの荷電粒子が原点Oから初速度 =(0.0)で運動する場合の軌道を C' とする。 このとき、CはAである。 ~くにあてはまる数式をしるせ。 文中の空所 A にあてはまる記述としてもっとも適当なものを、次のaf から 1つ選び、その記号をしるせ。 初に y 軸を通過するときの時刻はt= 図2のように, xy 平面に垂直に, 紙面の裏から表に向かって、磁束密度B の一様な磁 場がかかっているとする。 質量m, 電気量 gg > 0) の荷電粒子が時刻 t = 0 に原点 0から初速度v=v,0) > 0) で運動を開始した。 この粒子が運動開始後に最 1. 文中の空所 う で、そのときの座標は (x,y) = (0, え ) である。 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって、磁束密度 B の一様な磁場の両方がかかっているとする。 質量m,電 気量g(g> 0) の荷電粒子が時刻 t = 0 に原点から初速度 = (0,0)で運動を 開始した。 この粒子のx軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ Qs, ay とすると,運動方程式は y a.Cと同じ b. Cをx軸に対して反転させたもの C. Cをy軸に対して反転させたもの dCを原点Oを中心として反時計回りに90°回転させたもの e. Cを原点Oを中心として180°回転させたもの 4.Cを原点Oを中心として反時計回りに270°回転させたもの 1. MA や ド 図1 E ひ O 0 B B 図2 図3

回答募集中 回答数: 0
物理 高校生

(4)からの解説お願いします。学校でもらった問題集で類似問題探したんですけど、似たようなものがなかったので答えは初めの問題から62543です。

ⅣV 図のように、真空中において点0を原点とするxy座標平面上の点A(a, 0)に電気量 +4Q(Q > 0), 点B (-a, 0)に電気量9Q の点電荷を固定した。 y軸上の点(0, α)を 点C.x軸上の正の領域で点0から十分にはなれた点を点D. クーロンの法則の比例定数をと する。 また, 重力の影響は考えないものとする。 C(0, a) -9Q + 4Q B(-a, 0) A(a, 0) D 次の各問いについて それぞれの解答群の中から最も適切なものを一つ選び, 解答欄の数字にマー しなさい。 (1)x軸上において電場が0となる点のx座標を求めよ。 16 16の解答群 1 ① ④ 3a (2)点Cにおける電場の成分の大きさを求めよ。 17 17 の解答群 ① √2 kQ 3a² 5/2 kQ 2a2 5√2 kQ 4a² 5kQ 2a 5a 3√2kQ 2a2 13/2kQ 2a2 (3) 電気量+q(q> 0)の点電荷Pを点Cから点Dまでゆっくり運ぶのに必要な仕事を求め よ。 18 18 | の解答群 /2kQg √2 kQq √2kQg ① a 3a 5a 3√2kQg 5/2 kQq 7/2 kQq 2a 2a 2a (4) 点Dで点電荷Pを静かにはなしたところ, 点電荷Pはx軸に沿ってx軸の負の向きに運動 し、x軸上の点Eで速さが0となった。 点Eのx座標を求めよ。 19 19 |の解答群 a a 2a a 5a a (5) 点電荷Pの質量をm とする。 点電荷Pが点Dから点Eまで運動する間の速さの最大値を 求めよ。 20 20 の解答群 [kQq 5 ma /2kQq ma [kQq 2ma /3kQq ma /kQq ma /5kQg ma

回答募集中 回答数: 0
物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0
物理 高校生

(7)の答えが4になる理由がわかりません。 教えてください!

問4 次の文章中の空欄 7 8 に入れる語句または式として最も適 当なものを、それぞれの直後で囲んだ選択肢のうちから一つずつ AY 選べ。 水平でなめらかなxy平面上のx>0の領域に, 1辺の長さがⓐで1巻き の正方形の軽いコイルを置く。 コイルは変形せず,コイルの一つの辺には小 さくて軽い直流電源が取り付けられている。 図5のように,長さLの軽く て伸び縮みしない絶縁体のひもの一端をx軸の原点Oに固定し,ひもの他 端をコイルの一つの辺の中点Pに付ける。xy平面を含む空間において,磁 東密度の大きさBが比例定数6 (b > 0) を用いて B = bx と表される磁場 (磁 界)をx>0の領域に加えたところ、コイルに流れる電流が磁場から力を受 けて,x軸上でひもが張った状態でコイルは静止した。 このとき,コイルの 各辺はx軸, y 軸のいずれかに平行で, コイルには大きさの電流が図中の矢 印の向きに流れていた。 ただし, コイルに流れる電流による磁場の影響は無 視できるものとする。 ひもが張ってコイルが静止したことから,加えた磁場の向きは, ①xy 平面に平行で、y軸の正の向き xy 平面に平行で, y 軸の負の向き 7 ③ xy平面に垂直で、紙面の表から裏に向かう向き ④ xy 平面に垂直で、紙面の裏から表に向かう向き であるこ とがわかり、ひもが点Pでコイルを引く力の大きさは、 ① Iba ② Iba(2L+α) 8 である。 Iba (2L-a) ④ 2IbaL YA 2 B 直流電源 コイル ひも P L 図5 a a x

解決済み 回答数: 1
1/22