学年

教科

質問の種類

物理 高校生

物理基礎の運動の法則の問題です。85の(2)で、加速度が下向きに変化したので、重力、張力の力の他に下向きの力が働く気がするんですけどなぜ働かないのですか。教えていただけると嬉しいです。

重力, そ ってい 重 (2)加速度 1.2m/s2 の等加速度直線運動を 7.0s 間続けているので, 減速し始める直前の速度v は,公式「v=vo+αt」から, ■解説 (1) 糸の張力の大きさをTとすると,図1 物体が受ける力は図1のように示される。鉛直 上向きを正とすると, 運動方程式 「ma=F」は, 5.0×1.2=T-5.0×9.8 T=55 N ,物 (2)物 力である。物体は,力の大きい左向きに運動すると考えられる。左向 きを正として加速度を α 〔m/s2〕 とする。 運動方向の力の成分の和は, 6.0 4.5=1.5N となるので, 運動方程式 「ma=F」は, 3.0xa=1.5 a=0.50m/s2 左向きに 0.50m/s2 85.物体の上げ下ろし (1) 55 N (2) 35 N 02- 物体が受けている力は,重力と糸の張力である。正の向きを定 めて、運動方向の力の成分の和を求め, 運動方程式を立てる。 (2) 速度 の変化から加速度を求め, 運動方程式を用いて計算する。 2.5N 「 正の向き 大きさは は、エレー が大き 6.0N 4.5N 平 が静止 ① 方向 。 物 各問 T〔N〕 1.2m/s2 運動方向の力の成分の 和は, T-5.0×9.8 〔N〕 である。 出すた 介 えよ。 5.0×9.8N 図2 T'〔N〕 2.8m/s2 るが, v=0+1.2×7.0=8.4m/s ↓ 静止するまでに減速した時間は 3.0sなので, 5.0×9.8N その間の加速度αは, a= 0-8.4 3.0 == -2.8m/s2 糸の張力の大きさを T' とし,鉛直上向きを正とすると(図2),運動 運動方程式を立てる際 の正の向きは,初速度の 向きにとることが多い。 また, 上向きの張力を加 えていても、重力よりも 小さいとき,加速度は下 向きとなる。 8.0kg する 張力の 53 53 50と 止し 物体か

解決済み 回答数: 1
物理 高校生

名問の森の質問です。 (2)の解説部分の赤線がなぜなのかいまいちよく分かりません。教えてください🙇‍♀️

BxX 31 直流回路 電圧 100Vで使用すると, 80 W を消費する電球 L と, 40W を消費 する電球 M がある。 L, Mにかかる電圧 V〔V〕 と,電球を流れる電流 I〔A〕との関係を示す特性曲線は図1のようである。有効数字2桁で 答えよ。 19/9 名 00(1) Lに電圧 80Vをかけて使用するとき,Lの抵抗値はいくらか。ま た,消費電力はいくらか。 × (2) Lを電圧 100Vで使用しているとき,Lのフィラメントの温度は いくらか。ただし,抵抗の温度係数を2.5×10-3/℃ 室温を0℃と する。また,図1の点線はLの特性曲線の原点における接線を示す ものとする。 だから (3)図2において,Eは内部抵抗の無視できる起電力 120V の電池 Rは100Ωの抵抗である。 L を端子 XY間に連結して使用すると きLの電圧と消費電力はいくらか。ば (4)Lと100[Ω] の抵抗3本を並列にして(図3), 図2のXY間に連 結して使用するとき,Lにかかる電圧はいくらか。 × (5) LとMを並列にして、 図2のXY間に連結して使用するとき, L の消費電力はいくらか。 また, 回路全体での消費電力はいくらか。 Level (1) ★ (2) (3) (4) (5) Point & Hint Poji[C]での抵抗値は0袋)の (2)(4は抵抗の温度係数)が漁費電力 31 105 民として、R=R(1+al)と表され が大きいほど高温になる。つまり、グラ フの右上に向かって温度が高くなっている。 すると室温はどのあたりか。 706 図1を生かしたいのでにかかる圧を流れる電流を」として、キル ヒホッフの法則で関係式をつくる。一種の連立方程式の問題だが, グラフ上で解 くことになる。 (5)LとMを1つの電球とみて特性曲線をつくってみる。 LECTURE (1) 図1より V = 80[V] のとき I=0.7 〔A〕 の電流が流れるから, オーム の法則 V=RI より抵抗値 Rは R= == 80 0.7 ≒1.1×102 [Ω] 消費電力は VI = 80×0.7=56 〔W〕 RI2を用いてもよいが, VI ならダイレクトに計算できる。 10 M+J (2)V=100 〔V〕 のとき, I = 0.8 〔A〕 だから VOST V 100 R= == =125 [Ω] I 0.8 室温0℃はジュール熱の発生が無視できる原点近くの (VIが0に近い) 状態である。 [℃] での抵抗値 R のまま一定を保てば, 特性曲線は点線の 20 0.4 0.2 I[A] 1.2 225 1.0 0.8 0.6 Y 120V 100Ω RATE 図2 L IM 091 0 0 20 40 60 80 100 120 100Ω V(V) 図1 図3 ような直線となるはずだから Ro=1.0=20[Ω] よって, 求める温度を t [℃] とすると 点線のどこを 3. |使ってもよい 125 = 20 × ( 1 + 2.5 × 10-3t) .. t = 2.1×103 [℃] (3)Lの電圧、電流をV, I とすると, キルヒホッフの法則より 120 100I+V ・・・・・・ ① この関係を満たす V. Iは次図の直線(実線) で表される。 Lの特性曲線との交点が求める答 えだから V = 60[V] I = 0.6 (A) 消費電力はVI=60×0.6=36〔W〕 式①をグラフ化するとき 1次式だから直線 100Ω 120V 図 a

解決済み 回答数: 1
物理 高校生

(2)はこのようなやり方でも合ってるんでしょうか??教えてください

例題 解説動画 基本例題29 円錐振り子 図のように、長さLの糸の一端を固定し, 他端に質量m のおもりをつけて, 水平面内で等速円運動をさせた。糸と 鉛直方向とのなす角を0, 重力加速度の大きさをg として, 次の各問に答えよ。 出した。 X(1) おもりが受ける糸の張力の大きさはいくらか。 (2)円運動の角速度と周期は,それぞれいくらか。 指針 地上で静止した観測者には, おもり は重力と糸の張力を受け, これらの合力を向心力 として,水平面内で等速円運動をするように見え る。この場合の向心力は糸の張力の水平成分であ る。 (1)では,鉛直方向の力のつりあいの式, (2) では,円の中心方向 (半径方向) の運動方程式を立 てる。なお,円運動の半径はLsin0 である。 解説 (1) 糸の張力の大き 基本問題 210 211 212 .00S 00 TH g m m(Lsin0) w²=mg tane w= L cose 2 Lcose =2π w 周期Tは,T= 第Ⅱ章 力学Ⅱ 別解 (2) お (2) おもりとともに 0 さをSとすると, 鉛 直方向の力のつりあ いから, Scoso S 円運動をする観測者 には、Sの水平成 と遠心力がつりあっ てみえる。 力のつり あいの式を立てると L m (L sine) w² 0 Scoso-mg=0 S=mg SsinO mg cose (2) 糸の張力の水平成分 Ssin0=mgtan0 が向 心力となる。 運動方程式 「mrw²=F」 から, Ssin0=mgtan (2)の運動方程式と同じ結果が得られる。 m(L sine) w²-mgtan0=0 Point 向心力は、重力や摩擦力のような力の 種類を表す名称でなく,円運動を生じさせる原 因となる力の総称で、常に円の中心を向く。 mg

解決済み 回答数: 1
1/16