学年

教科

質問の種類

物理 高校生

(1)について教えてください。 加速度を求める公式として2枚目の公式を習ったのですが答えは違う公式を使っています。2枚目の公式はいつ使う物ですか🙇‍♀️?

(基本例題 3等加速度直線運動 x軸上を一定の加速度で運動する物体が、 時刻 t=0sに原点Oを正の向きに12.0m/sの速度で 出発した。 その後, 物体はある地点で折り返し、 t=5.0sには負の向きに8.0m/sの速度になった。 (1) 物体の加速度の向きと大きさを求めよ。 t=0s 0 t=5.0s 12.0m/s 8.0m/s (2)物体が折り返す時刻と、このときの物体の位置(x座標) を求めよ。 (3)t=5.0sでの物体の位置(x座標)と,この時刻までに移動した距離を求めよ。 解答 (1) 加速度をα[m/s] とすると,v=vo+αt から, -8.0=12.0+α×5.0 よって, a=-4.0m/s² x軸の) 負の向きに 4.0m/s^ (2) 折り返す地点での速度は0m/sである。 折り返す時刻をt[s] とすると, = v +αt から, 4 [m/s] 12.0 0=12.0+(-4.0)xt よって, t=3.0s S₁ 3.0 5.0 0 このときの位置をx[m] とすると, x=vot+/12/12 から, Sa t(s) -8.0 x=12.0×3.0+ 1/2×(-4.0)×3.02=36-18=18m (3)4=5.0sでの位置をx'[m] とすると, x=vot+ 1/12から 時刻・・・ 3.0 s, 位置…18m x=12.0×5.0+1/2×(-4.0)×5.0°=60-50=10m 10 X 18 (2)の結果から, t=3.0s 以降は負の向きに移動するので、 t=5.0sまでに移動した距離 s 〔m〕は. 別解 右上のtグラフの面積S, 〔m) Sz[m] を用いて, s=Si+Sz=18+8.0=26m x'=S,-S=18-8.0=10m 途中で運動の向きが変わる 場合は、 s=18+ (18-10)=26m 位置・・・10m, 移動した距離...26m (移動した距離) 原点からの変位 運動の式)」を使うか

未解決 回答数: 1
物理 高校生

物理 原子分野です (3) 解説に 反応前の全エネルギーと 反応で発生したエネルギー(解放されたエネルギー)の和が ヘリウムと 中性子のエネルギーの和となっています なぜこうなるのでしょうか 元々、水素2つのエネルギーがあって、そこから、水素、中性子、解放されたエネルギー ... 続きを読む

104 (2) 陽電子は正の電荷をもち、その質量は電子の質量に等しい。静止し ている陽電子と電子が結合し,陽電子と電子は消滅し,エネルギーの 等しい2個の光子が発生した。この光子1個のエネルギーは [MeV〕 である。 ただし, 1MeV=10°eVである。 原子 105 V (2) 衝突後のヘリウム3原子核の速さVと中性子の速さの比では (2)である。 [MeV] である。 や (3) 中性子の運動エネルギーは (3) (立教大) 153 超高温において, リチウムの同位核1個と重水素の原子核(質量数2) 1個が結合して,2個のヘリウムの原子核 (質量数4) を構成する。 中性 子の質量は 1.0087 [u] 陽子の質量は1.0073 〔u〕, リチウムの同位核1 個の質量は 6.0135〔u] 重水素の原子核1個の質量は2.0136〔u〕,ヘリ ウムの原子核1個の質量は4.0015〔u〕とし, 1 [u] は 931 〔MeV〕に相当す る。 重水素にも陽子と中性子の質量欠損ある (a) 重水素原子核の質量欠損は(1) [u] で, 結合エネルギーは (2) [MeV]である。 (b) 上の反応は次の核反応式で表される。 (3) Li+ KH → (6) X He (5) (7) (c)この反応で失われた質量は (8) | [u] である。 答えは小数点以下 第4位まで求めよ。 (d) この反応で (9) [MeV〕 のエネルギーが放出される。 答えは有効 数字3桁で求めよ。 (東海大) 154" 等しい運動エネルギー 0.26 MeVをもつ2個の重水素原子核Hが 正面衝突して, ヘリウム原子核Heと中性子 in が生成される。これ は核融合反応と呼ばれ、次の反応式で表される。 {H+H→He+ in ただし、中性子,重水素原子核, ヘリウム3原子核の質量は,原子質 量単位で表すと, それぞれ 1,0087 u. 2.0136u. 3,0150uである。 ここで1u=1.7×10kg 1MeV=1.6×10 'J. 光速e=3.0×10m/s とする。 (1) 質量を失うことによって生じたエネルギーは (1) (MeV)である。 (日本)

未解決 回答数: 1
物理 高校生

こういう記述系のことをちゃんと書くことが苦手なのですが 具体的に押さえておくべきポイントとかありますか?

593. 水素原子の 解答 (1) 解説を参照 (2) 6.6×10-7m 指針 電子がより低いエネルギー準位に遷移するとき、準位間のエネ ルギー差に相当するエネルギーをもつ光子が放出される。 このとき,準 位間のエネルギー差が大きいほど, 放出される光子の波長は短い。波長 の長短とエネルギーの大小を関連させて考える。 (2) では, 与えられた式, 404 12/12 (1111) を用いる。 =R 12 222 n n 解説 (1) エネルギー 準位の高いところから低 いところに電子が遷移す るとき, 準位間のエネル ギー差に相当するエネル ギーをもつ光子が放出さ れる。 F は, 最も波長が 短い(エネルギーが大き い) 系列に属しており, この系列は,準位間のエ ネルギー差が最も大きい 系列である。したがって,電子が遷移した後のエネルギー準位は最も 低く,その量子数はn'=1である (図)。 また,F は,その系列の中では最も波長が長く、エネルギーが小さい。 これから,遷移する前のエネルギー準位の量子数は, n' = 1のエネル ギー準位との差が最も小さいn=2である。 量子数2のエネルギー準 位から量子数1のエネルギー準位への遷移による電磁波である。 (2) D, E は, 波長が2番目に短い系列に属しており,この系列は, 準 位間のエネルギー差が2番目に大きい系列である。 したがって, 電子 が遷移した後のエネルギー準位の量子数は, n'=2である(図)。 D は, その系列の中で最も波長が長く, エネルギーが小さいので, 量子数 n=3のエネルギー準位から量子数n'=2のエネルギー準位への遷移 によるものである。 Eは, Dの次に波長が長いので,n=4からn'=2 へのエネルギー準位間の遷移によるものである。 波長 エネルギー D E B 各系列で,準位間の エネルギー差が小さ い一部の遷移を示す。 FC 量子数 ∞ 与えられた式, 1/1=R ( 17/11/12 ) を用いると,Eの輝線の光の波長 n²

回答募集中 回答数: 0
1/6