学年

教科

質問の種類

物理 高校生

h=1/2gt² の式が分かりません。 tは飛び出した地点に戻ってきた時の時刻ですよね? 台車に衝突して戻ってくるということは 2h=1/2gt² では無いのですか?

26. <非慣性系における仕事とエネルギー 図のように、円弧状のすべり面をもつすべり台Aを固 定した台車が水平な床を右向きに一定の加速度 αで運動 している。 台車の上面は床に平行で, すべり台Aの左端 と右端の高さはそれぞれHとんである。 円弧の半径は H-hで,面はなめらかである。 重力加速度の大きさを gとする。 H 小物体 P 加速度 α すべり台AI 台車 株 (1) 質量mの小物体Pを, すべり台Aの円弧上で鉛直となす角0の位置にそっと置いたとこ ろ, 小物体Pは置かれた位置ですべり台Aに対して静止したままであった。 このとき, 加 速度αの大きさを求めよ。 (2)次に小物体を, すべり台Aの円弧上で台車からの高さHの点で台車に対して静止する ように置いてそっとはなすと, 小物体Pは円弧上をすべり すべり台Aから水平に飛び出 した。 この間における台車に対する小物体Pの速さの最大値 VM と, 飛び出す瞬間の台車 に対する小物体Pの速さVをそれぞれm, H, h, g, 0の中から必要なものを使って表せ。 (3)今度はすべり台Aの円弧上のある位置で小物体Pを同様にそっとはなすと, 小物体Pは 円弧上をすべり台車に対する速さ V ですべり台Aから水平に飛び出した。 その後, 小 物体Pは台車上面で1回衝突し, すべり台Aから飛び出した位置に再びもどってきた。 Vo mh, gの中から必要なものを使って表せ。 ただし, 面との衝突の際, 台車から見 た小物体の鉛直方向の速さと, 水平方向の速さは変わらないものとする。 [大阪大 改]

解決済み 回答数: 1
物理 高校生

問5相対速度の問題で、解答にある相対速度が表されてる図が何故そうなるのか教えて頂きたいです。 相対速度を考えるときの図の書き方も教えて頂きたいです。 回答よろしくお願いします🙇🏻‍♀️

物理 次に,AさんとBさんは、発射台が水平面に固定されていない場合の現象につ いて考察している。ただし、図3のとは正しくは描かれていない。 Aさん: 発射台が水平面上をなめらかに運動できるとき, 図3のように発射台から 見て水平方向から45°の方向に小球を打ち出すと, 小球が水平面に衝突す る直前の速度方向と水平面のなす角度が 45° とは異なるよ。 Bさん:小球を打ち出したときの反動で,発射台が動いてしまうのが原因だね。小 球が水平面に衝突する直前の速さをひとして考えてみよう。 打ち出した直後 落下する直前 小球 <45° 発射台 小球 水平面 水平面 問5 次の文章中の空欄 10 ものを,それぞれ直後の { 11 物理 に入れる式または語句として最も適当な } で囲んだ選択肢のうちから一つずつ選べ。 Aさん:Φ=60°になるとき,小球を打ち出した直後の,発射台に対する小球 の速さ”はどうなるだろう。 Bさん:発射台に対する小球の相対運動を考えると求められるよ。小球を打ち 出した後の台の速さをVとすると, v= 10 0 √2(V) ② √2V+ 2(+12/20) ③√√2 (V-v') ④ √2 (V+α) となるよ。 Aさん:一方で,発射台の質量が小球の質量より十分大きいときは ① 0°に近い値 11' 図 3 問4 小球を打ち出した後の発射台の速さはいくらか。 最も適当なものを,次の① ⑥のうちから一つ選べ。 ただし, 発射台の質量をM, 小球の質量をとす る。 9 mv'sin 45° mv'cos 45° mu'sino M M M mv'cos o M 2mv'sin 2mv'coso M M 11 ② 45°に近い値になるよね。 ③ 90°に近い値

回答募集中 回答数: 0
物理 高校生

青線の所がよく分からないのですがどなたか解説お願いします🙇‍♂️

チェック問題 1 鉛直投げ上げ運動 3分 右図のように, ボールを真上に初速度 39.2m/sで投げ上げた。 軸 x[m] g=9.8m/s2 重力加速度を9.8m/s2とする。 次の値を 求めよ。 ひ。 =39.2m/s (1) 時刻 t 〔s]での速度v [m/s]と座標 x [m] 0m t=0s (2) 最高点の時刻t]〔s〕 と座標 x] 〔m〕 (3)投げたところに再び戻る時刻 〔S〕 解説 (1)《等加速度運動の解法》 (p.21)で解く。 Step 1 x 軸はすでに与えられている(原点は地面, 上向き正)。 Step 2 初期位置 Xo 0 初速度 39.2 加速度 a -9.8 軸の向きで加速度の符号 が決まるので,はっきり させる必要があるんだ。 軸の正と逆向き Step3 等速度運動の [公式ア (p.17,18) より, 軸x v=39.2+(-9.8)t… ① 谷 最高点で, 谷 v=0 t=t₁ 1 x=0+39.2t+= (-9.8)t... ② 2 xはあくまでも座標だよ! 移動距離じゃないよ。 (2) 最高点とは,上下方向の運動が一瞬止まる点なの で,①の式にv=0, t=hを代入して, 39.2-9.8t=0 したがって, 左=4s.... | また,このときの座標 x=x1 は,②式より, x=39.2×4-4.9×42=78.4m... 答 (3) 戻るとは座標 x=0にくることなので, ②式より, 0=39.2tz-4.9×2=0 は除外 X1 よって, t=8s・・・・・・笞 別解 対称性より,た=2xt=2×4=8s・・・・・簪 0 -t=t₂ 戻るとき, x=0

解決済み 回答数: 1
1/14