学年

教科

質問の種類

物理 高校生

(2)番についてです 自分は位置エネルギーと大気圧への仕事も考えてW=pΔv+MgL/2+p0ls/2 と考えたのですが、解答では位置エネルギーとか考慮していません。なぜですか?

49 熱力学 断熱材で作られた円筒形の容器に〔[〔mol] の 単原子分子の理想気体が入っていて, 圧力と温 度TOK]は大気のそれと等しい。 ピストンMの 質量は Mi [kg] で滑らかに動く。はじめMはス トッパーAで止まっており, 容器の底からの高 さはL][m]である。気体定数をRJ/mol・K], 重力加速度を[m/s2] とする。 (1) ヒーターのスイッチを入れて気体を加熱し たところ、温度が T1 〔K〕 になったときM が上に動き始めた。 温度 T1 と気体に加えた熱量 Q1 〔J〕 を求めよ。 (2) Mはゆっくり上昇を続け、高さが12/23L 〔m] となった。このとき の温度T2 〔K〕を求めよ。 また,Mが動き始めてからこのときまで に気体がした仕事 W2 〔J〕 と気体に加えた熱量Q2 〔J〕 を求めよ。 ここでヒーターのスイッチを切った。 そして, 外力を加えてMを ゆっくりと押し込み, 元の高さL 〔m〕まで戻した。 このときの気体 の温度 T 〔K〕を求めよ。 また,このとき気体がされた仕事 W [J] を求めよ。 ただし, この断熱変化の過程では圧力Pと体積Vの間に は PV 3 =一定の関係がある。 (京都工繊大) Base 771 3 Level (1),(2)★ (3)★ Point & Hint Cv= Cp= ※ この3式は「単原子」のとき (1) 前後の状態方程式と, ピストンが 動き始めるときの力のつり合いを押さ える。 大気圧をPo, ピストンの面積をS とでもおくとよいが,これらの文字は 答えには用いられない。 (2) なめらかに動くピストンが自由になっていると 定圧変化が起こる。 定圧変化では,気体がする仕事=P⊿Vとなる。 (3) 断 熱変化では,PV=一定が成り立つ。 ♪は比熱比とよばれ, y=Cp/Cv ここで は単原子なので, y = = 12/12/12/2=121238 となっている。あとは第1法則の問題。 M -R ヒーター 10000 単原子分子気体 3 U= -nRT 2 5 R LECTURE (1) 初めの気体の状態方程式は PSL = nRTo ...... ① ピストンが動き始めるときの圧力をPとすると PSL = RT ...... ② そして、このときのピストンのつり合いより PS = PS+Mg..... ③ MgL Ti = To+ nR QinCvAT=- R(T₁-To) = 32 MgL ① ~ ③より 定積変化だから P1での定圧変化が起こる。状態方程式より PS・・ S/L=nRT2 4 (2) より そして そ T₁ = 3 T₁ = 2 (T. + Mg L nR W₁ = P₁AV = P₁ (S. 3/L-SL) より 49 熱力学 状態方程式より (3) 高さまで押し込んだときの圧力を P3 とすると B 第1法則より PS T3 = Mg また, Q2=nCAT=n212R(T2-T)=(nRT+MgL) 4U』を調べ ( 4U2=220R (T-T) 第1法則 4U2 = Q2+(-W)を用いて 4U₂ Qを求めることもできるが、まわりくどい。 143 P.(SL) = P.(SL) ( ∴. P3= P1 PS ピストンが動いて も上図の状況は変 わらない。 つまり, 圧力 P1 は一定 =1/23PSL=/1/2nRT=1/12(nRT+MgL) ②を用いた (2) *P₁.SL = nRT .... (3) ³T₁ = (3) ³( T. + MgL) 'T= nR 2nR(T₁-T₂) = 0+W₁ W₁ = (2) ² (2) ³-1} (nRT. + MgL)

回答募集中 回答数: 0
物理 高校生

Missのところについて質問です。 ボールがバットにFの力を受けているから、 バットが受けた力F'は F+F'=0よりF'=-Fということですか?

VI 運動量 力積と運動量 運動量は質量と速度の積で,いわば 「運動の「勢い」を表す量だ。 同じ速度でもト ラックと人とでは勢いが違うというわけだ。 運動量を変えるためには力戸と時間 4t が必 要となる。 式にすれば 力積=運動量の変化 Fat=mv-mo 注目物体の 運動量変化 [kg・m/s] 注目物体が 受けた力積 [N.s〕 物理 - VI 運動量 ちょっと一言 時間 4tの間に力の大きさが変化 している場合は,力の平均値F を用いれ ばよい。 つまり 4tは微小時間と限る必要 F はないということ。 F [4t [s] 間の接触 m v * カ FAt, ひ mo りきせき これは運動方程式から導かれる1つの定理。 まず, ベクトルの関係であ ることをしっかり押さえておこう。 力積 4t は力の向き、運動量mv は速度の向きをもったベクトルだ。 4t At ※ md =戸に,この定義 d=4v を代入して整理すれば導ける。 なお, 力積は [N・s〕, 運動量は 〔kg・m/s〕で扱うが、 両者は同じ単位。 [N]=[kg・m/s2〕 (忘れたらF=ma から確認) だからだ。 -4t 57 ⑩m Miss 上の図で, バットが受けた力は? mv-mと答えてしまっ てはダメ。 バットが受けた力は作用・反作用の法則よりとは逆向きの 一戸のはずだ。だから, - (ボールが受けた力積) として求めることになる。 上で, “注目物体”と修飾語をつけたのはこのためだ。 面積 力積 ! 同じ面積 →時間

回答募集中 回答数: 0
物理 高校生

⑵の②の式が−q3になる理由がわからないです。

発展例題42 コンデンサーを含む複雑な回路理 STS TI 図の回路において, Eは内部抵抗が無視できる起電力 9.0 CA Vの電池, R1, R2 はそれぞれ 2.0kΩ, 3.0kΩの抵抗,C1, Co, C3はそれぞれ 1.0μF, 2.0μF, 3.0μFのコンデンサーで ある。はじめ,各コンデンサーに電荷はなかったものとする。 (1) 十分に時間が経過したとき, R」を流れる電流は何mAか。 (8) 各コンデンサーのD側の極板の電荷は何 μC か。 (1) コンデンサーが充電を完了し 指針 ており、抵抗には定常電流が流れる。 (2) 電気量保存の法則から、各コンデンサーに おけるD側の極板の電荷の和は0である。 解説 (1) R1, R2 を流れる定常電流を ELAN. I= 9.0 2.0+3.0 -=1.8mA とすると. (Iの計算では,V/kΩ=mAとなる) (2) 図のように。 各コンデンサーの極板の電荷 を Q1, 92, 93 〔UC〕 とする。 はじめ各コンデンサ の電荷は0なので、 電気量保存の法則から, -9₁-92-93=00 R」 の両端の電圧は,C1, C の電圧の代数和に 等しく, R2 の両端の電圧は,C3, C2 の電圧の イロ 10 A 2.0kΩ +9₁ th CA 1.0 μF 91 SGUT 2.0×1.8= 1.8mA 九値を変化 3.0μF ER 3.0×1.8= + C₁ ACHIE C +93 91 93 1.0 3.0 93, 92 3.0 2.0 93 D 19. 電流 245 KA 発展問題 500 C D E1₁ R2 BUT FE C2 vag 3.0kΩ 92 +92 2.0µF ・B B NE 式 ②③は μC UF となる。 =V 式 ①,②,③から、 g1=4.8μC, Q2=8.4μC, Q3=3.6μC C1: したがって,-4.8μC, C28.4μC, C3-3.6μC ALGT

回答募集中 回答数: 0