学年

教科

質問の種類

物理 高校生

重要問題集85の(3)(4)です。 (3)書いてある言葉の意味は分かります。なぜ1がsinθとルートの間に入ったのかがわからないです。 (4)1行目までしか言ってる意味がわからないです。 受験に物理を使わないので基礎知識がだいぶ欠落しています(>_<) 頑張って理解する... 続きを読む

必解 85. 〈光の屈折〉 図は屈折率の異なる2種類の透 明な媒質1 (屈折率 n) と媒質 2 (屈折率n2) からなる円柱状の二 重構造をした光ファイバーの概念 図であり,中心軸を含む断面内を 光線が進むようすを示している。 中心軸に垂直な左側の端面から入射した光線が、 媒質の境界で全反射をくり返しながら反対 側の端面まで到達する条件を調べてみよう。 空気の屈折率は1としてよく, 媒質中での光損 失はないものとする。 また媒質2の内径および外径は一定であり, 光ファイバーはまっすぐ に置かれているとしてよい。 中心軸 L 媒質2 媒質 1 媒質 2 B (1) 左側の端面への光線の入射角を0とするとき COSα を0と」 を用いて表せ。 (2) 光線が光ファイバー内で全反射をくり返して反対側の端面に到達するための sin0 に対 する条件を 1 2 を用いて表せ。 ただし,0°<0<90°とする。 (3)0° <890°のすべての入射角0に対して境界 AB で全反射を起こさせるための条件を nとn2 を用いて表せ。 (4) 光ファイバーの全長をL, 真空中での光の速さをcとするとき (2)の条件を満 左側の端面から反対側の端面に到達す7 土地 ミ

回答募集中 回答数: 0
物理 高校生

(5)の単振動、最大の速さについての質問です!解説は理解出来てますが、2枚目にあるように単振動の位置エネルギーで表せないのはなぜですか?

114 力学 38 単振動 水平面内において一定の角速度ので 回転している円板がある。 円板上には, 半径方向にみぞが掘られており、その中 にばね定数k,自然長のばねが置かれ ている。 ばねの一端は中心0に固定され, 他端には質量Mの小球Pがつけられてい る。 Pはみぞの中を滑らかに動け, 0 か つ らPまでの距離rを用いておもりの位置を表す。 いま、円板上で静止 している観測者Aには, Por=ro の点に静止して見えた。 真上から見た図 Level (1), (2)★ (3)~(5)★ Point & Hint W (1) ro をlk, M, ω を用いて表せ。 (2) こうなるために必要な角速度に対する条件を表せ。 次に,Pをみぞに沿って外側に動かし, 点0 からの距離 n の点で静 かにPを放したところ, P はみぞの中で運動を始めた。 (3) Pが位置にあるときAが見る加速度をaとすると, A が書くべ き運動方程式はどのようになるか。 みぞ方向外向きを正とする。 (4) Pの位置を,rの代わりに ro から測ってx=r-ro を用いて表 すと, 運動方程式の右辺の力はLx の形になる。 Lをk, M, ω を 用いて表せ。 (5) Pを放してからばねの長さが最小となるまでの時間, ばねの長さ の最小値,およびAが見るPの最大の速さをk, M, w, ro, n, のう ち必要なものを用いて表せ。 (北海道大) Aにとっては遠心力が現れている。 (2) (1) の答えの形から自然に条件が決まってくる。 (5) (4) の結果からPの運動が確定する。 P the p LECTURE (1) 遠心力と弾性力のつり合いより Mrow²=k(ro-l ... (2)>0より kl Yo= k-Mw² k-Mw² > 0 k w√ M 回転が速過ぎると(ωが大き過ぎると),弾 性力より遠心力がまさり つり合う位置がな くなってしまう。 (3) ばねの伸びは -l と表せるから Ma=Mrw²-k(r-1) (4) 上式に r = ro+x を代入すると ( 38 単振動 •mmmm 自然長 遠心力がかかるから, | ばねは伸びているはず。 ①を用いた 115 遠心力 Mをmと書いてい ないだろうか? 物体上から見たとき 向心 外から見たとき ▷じゃ Ma = M(ro+x)w² − k(ro+x-1) ) =Mxw²2-kx =-(k-Mω²)x ......2 ∴. L=k-Mo² (2)で求めた条件よりLは正の定数であり,②はPがx=0(力のつり合 い位置)を中心として単振動をすることを示している。 (5) ②から単振動の周期Tは M 最大の速さは、 公式 Vmax = Aw より [ro を代入する) より速い Queeeeeeeeeeee- 0 Yo T=2nvk-M²2 2π√ とする誤りが多い。ばね振り子の周期 k が不変となるのは、ばねの力のほかに一定の力 がかかる場合のことである。 遠心力は半径と ともに変わる力である。 ばねの長さが最小となるのは, 内側の端の位置にくるときだから、端か ら端までの時間は半周期。よって, M T= √k-M₁² 振幅Aは上図より, A = n-ro よって, ばねの長さの最小値は ro-A=2ro-n # A 中心 k-Mos² A² = (n-1)√² M

回答募集中 回答数: 0
物理 高校生

(1)の2つ目のニアイコールの前後でどういう計算をしているのか教えてください

定の速さで直線上を運動している振動数f の音源が, 点0 を通過する瞬間から短い時間 ⊿t の間,音を発する。 0 から見て音源の運動方向と 角をなす方向へ、距離だけ隔たった固定点P でこの音を聞く。ここで, 音源の速さは音速Ⅴ より遅いとし,また,音源が音を出しながら進行 vat する距離 4tは, rに比べてずっと小さいとする。 以下の問いに答えよ。 音源が音を出し終わる点,すなわち, 点0 から だけ隔たった点 解答 (1) △OPO' について余弦定理を用いると r² = √r² + (v4t) ² - 2r (v4t) cos 0 = r (2) =r₁ r√/1-2( v4t)cos 0 =r{1- (v4t) cos 0} = r それぞれ 174 + 1/14 だから 9 V '0′と点Pとの距離は、近似的にr-v4t cos0 と表されることを示せ。 点Pで聞こえる音の継続時間 ⊿t' を⊿t, V, 0, 0 で表せ。 (2) の結果を用いて, 点Pで聞こえる音の振動数f' をf,V,v,0で 表せ。 8=60°の方向にある遠方の点P, で振動数 1020 Hzの音が聞こえ、 8=180° の方向にある点P2で振動数 935 Hzの音が聞こえた。 音速 V を340m/s として, 音源の運動する速さと音源の振動数fとを求めよ。 (電通大) 0 2 1+ (v4t) ² - 2 ( v4t) cos 0 r COS =r-vat・cos o Dt: Ba r At' ' = (st + 7) - — = st - ² = 7² = 4t O' |別解 r≫udt の条件では線分 OP と O'P は平行とみなすことができる。 したがって, O' から OP に下した垂線の足をHとすると,HP≒O'P ∴. OP-O'P≒OH = v4t・cos 0 (2) 時刻 t = 0 に音を出し始めたとすると, 音が聞こえ始める時刻, 終わる時刻は, 1,P j' O'P≒OP-OH=r-vat.cose At-v4t cos 0 V-vcos At

回答募集中 回答数: 0
物理 高校生

ここの条件は問題中でどういう役割をしますか?

56 Ⅰ章 力と運動 発展例題 8 静止摩擦力 図のように,重さwの物体PとおもりQを軽い糸でつな に回転する滑車に糸をかける。 物体PとおもりQが静止す るためには,Qの重さはどのような範囲にあればよいか。 いで、水平とのなす角が0の斜面の上端にある, なめらか ただし,Pと斜面との間の静止摩擦係数をμ(μ <tane)と する。 指針 Qの重さが求める範囲の最大値 W1 のとき,Pはすべり上がる直前であり, 最小値 W2のとき,Pはすべりおりる直前である。 それぞれの状態において, Pは動こうとする向 きと逆向きに最大摩擦力を受けている。このこと に注意して,各状態の力のつりあいの式を立てる。 解説 Pがすべり上がる直前, すべりおり る直前のそれぞれにおいて, Qにはたらく力はつ りあっており,Pが糸から受ける張力はそれぞれ W1, W2 に等しい。 また, Pが受ける垂直抗力を N, 最大摩擦力を F とすると, Fo=μN=μwcoso 各状態でPが受ける力は図のようになる。 すべり 上がる直前の力のつりあいから, W1 = wsino+μwcosa=w(sino+μcose) NA wsine 指針 AとBの間では, 動摩擦力がはたら いている。Bが運動方向に受ける力は動摩擦力 μ'mg のみで、Bは右向きに加速しており, Aか ら右向きに動摩擦力を受けている。 Bが受ける動摩擦力の反作用として、Aは左向 きに動摩擦力μ'maを受け 発展例題 9 重ねた物体の運動 水平な床の上に,質量 2mの物体Aを置き, A の上に質量mの物体Bをのせる。 床とAとの間に 摩擦はなく, AとBとの間の動摩擦係数をμ'と する。 Aをあるカfで右向きに引くと, AとBと Fo so すべり上がる直前 A 解説 のように れぞれの wcose w A:2 f P B S wsine 発展問題 119 N. A w すべりおりる直前の力のつりあいから, μwcoso+W2=wsind W2=w(sine-μcose) M ここで, W2=wcose (tan0-μ) であり, 問題の条 件から, "<tan0 なので, W2 > 0 となり,題意を 満たしている。したがって, 重さWの範囲は, w (sino-μ cose)≦W≦w(sino+μcos0 ) W2 Fo wcos o So すべりおりる直前 の間ですべりが生じ, 別々に運動した。 重力加速度の大きさをgとして, AとBのそれ ぞれの床に対する加速度の大きさを求めよ。 Q 発展問題 125 の力は、

回答募集中 回答数: 0