学年

教科

質問の種類

物理 高校生

至急です💦 物理基礎の有効数字が何回やっても理解できません。 この問題に書かれている(24.5)は有効数字3桁?なのに、どうして答えはすべて有効数字2桁で表されてるのでしょうか🤔

25. Point ! 地上を原点、 鉛直上向き軸の正 の向きとし、「v=vo-gt」, 「y=vot-12gt2」 の式をもとに考える。 (1) 最高点では速度v=0 である。 (3) 小球が 19.6mの高さを通過するのは,上昇 中と落下中の2回あることに注意する。 解 答 (1) 小球を投げてから最高点に達するまでの時間 を [s] とする。 最高点では速度0なので、 鉛直投げ上 げの式 「v=vo-gt」 より 0=24.5-9.8×t よって t₁ = 24.5 9.8 -=2.5s ゆえに 2.5秒後 1 (2) 「y=vot-mgt2」より y=24.5×3.0-×9.8×3.02 2 =73.5-44.1=29.4≒29m (3) 小球を投げてから 19.6mの高さを通過するまでの時間 を[s] とする。「y=vot-1/2gte」より T 19.6=24.5×11×9.8×t 2.5s () 1.0 s 4.0s 両辺を4.9 でわると 4=5t-t22 19.6=24.5tz-4.922 t22-5tz+4=0 (t-1) (t2-4)=0 よって t2=1.0, 4.0s ゆえに10秒後,40 補足1 参考 最高点の高さんは「v-vo2-2gy」より 02-24.52=-2×9.8×h 24.52 h= =30.625≒31m 2×9.8 このば 2 t2=1.0s は上昇中, t=4.0s は落下中である。 これらの時間 は,最高点に達する時間 =2.5s の, 1.5秒前と1.5秒後であり 最高点に関して対称であることがわかる。

解決済み 回答数: 1
物理 高校生

この問題の(3)で、 わたしはビルの高さを求めるのなら、 鉛直投げ上げの公式v=v0t−½gt²の式から出た答え14.7から、(1)で出た答え4.9を引く必要があるのかなと思ったのですが、なぜ引かないんですか? (投げ上げの公式で出た答えは、ビルの高さ+投げ上げた高さですよ... 続きを読む

基本例題 5 鉛直投げ上げ 基本問題34,35,36,37 ある高さのビルの屋上から、 鉛直上向きに速さ 9.8m/sで小球を 投げ上げたところ, 3.0s 後に地面に達した。 重力加速度の大きさを 9.8m/s2 として、 次の各問に答えよ。 9.8m/s (1) 小球を投げ上げてから最高点に達するまでの時間と, 屋上か ら最高点までの高さを求めよ。 (2) 小球が地面に達する直前の速さを求めよ。 (3) 地面からのビルの高さを求めよ。 指針 ビルの屋上を原点とし、 鉛直上向き にy軸をとって,鉛直投げ上げの公式を用いる。 投げ上げられた小球が最高点に達するとき,その 速度は0となる 。 解説 (1) 速度が0となるときが最高点 になる。 求める時間t[s] は, 「v=vo-gt」 から, 0=9.8-9.8xt\mt=1.0s 求める高さを y〔m] とすると, 地面 負の符号は,速度が鉛直下向きであることを表 している。 (3) 求める高さは,投げ上げてから 3.0s後のy 座標 y〔m〕の大きさである。「y=vot-12gt-」 2\m0. から, y2=9.8×3.01 ×9.8×3.02=-14.7m m0 これは,屋上を原点としたときの地面のy座標 である。したがって、ビルの高さは15m T 「y=vot-1/2gt2」から、 y=9.8×1.0 11/13× ×9.8×1.02=4.9m (2) 求める速さは,投げ上げてから3.0s後の速 さである。 「v=vo-gt」から, Point 軸の原点を地面にとるとは限らない。 屋上を原点にとって、 鉛直上向きを正としてい るので、地面の座標は負の値で表される。 v=9.8-9.8×3.0=-19.6m/s 20m/s

解決済み 回答数: 1
物理 高校生

⑴は比を使って⑵は重さから点Oを中心として2:3として考えるのはあってますか?解説と違くてこの考え方でもいいんですか?

基本例題16 力のつりあいとモーメント Shap 図のように, 長さ1.0mの軽い棒の両端A, Bに, 基本問題 134,138 それぞれ重さが30N, 20Nのおもりをつるし,点0 にばね定数 2.5×102N/mの軽いばねをつけてつるし い たところ,棒は水平になって静止した。 2.5×102N/m A 30 B (1) ばねの伸びはいくらか。 trolase 1.0m 30 N 20 N のの弾性力の大きさは, (2.5×102) xx〔N〕である。 鉛直方向の力のつりあいから, (2.5×102) xx-30-20=0 x=0.20m (2) AO の長さはいくらか。 指針 棒(剛体) は静止しており, 棒が受け る力はつりあっている。 また, 力のモーメントも つりあっている。 (1) では,鉛直方向の力のつり あいの式を立てる。 (2)では,点0のまわりの力 のモーメントのつりあいの式を立てる。 解説 (1) 棒が受ける力は, 図のようになる。 ば ねの伸びをxとする と、フックの法則 「F=kx」 から, ばね (2.5×102) Xx [N] 30N 20 N (2) AOの長さをL〔m〕 とすると,BO の長さは, (1.0-L) 〔m〕 と表される。 点0のまわりで力の モーメントの和が0となるので 30L-20(1.0-L)=0 L=0.40m Point 力のモーメントのつりあいの式を立て るとき,どの点のまわりに着目するのかは任意 に選べる。計算が簡単になる点を選ぶとよい。

解決済み 回答数: 1
物理 高校生

(3)の解説の変化量のところがわからないです。変化量はどうやって出しているのですか

したがって, 比熱の比は、 例題 S 混合気体 ~ Sast 9912 (5)融解曲 25 29 容積 2.0L, 4.0Lの容器 A, Bが,図のよ うに連結されている。 容器Aにはメタン, 容 器Bには酸素を入れて,ある温度にすると, 圧力はそれぞれ3.0×105 Pa, 6.0×105 Pa だった。コックを開けて気体を混合し、点火 して完全に反応させた後, 元の温度に戻した。 連結管やコック,および, 生じる水 の体積や、水蒸気の蒸気圧は無視してよい。 分子量 CH4=16.0,O2=32.0 点火装置 容器B A 20 想気 (a) f 2.0L 4.0L コック (b) 2 の の (c)】 (1) 反応前の混合気体中のメタンの分圧は何 Paか。 (d) (2) 反応前の容器内の全圧は何Paか。 (3) 反応後の容器内の全圧は何Paか。 KeyPoint 点火前後で温度一定: メタンと酸素のそれぞれにボイルの法則が成立する。 同温同体積 : 圧力比は物質量比に等しい。 ●センサー ●温度一定より, ボイル の法則 piVi=P2V2 ●全圧=分圧の和 ●同一容器内の気体の圧 力比は物質量比に等し い。 →反応による変化量を 圧力で示す。 重要 (1) C 解法 (1) (2) 気体についてボイルの法則が成立する。 混合 後の各気体の分圧を PCH4, Po2 とすると, 混合気体の体積は 6.0Lなので, (2 CH4 : 3.0×10 Pa×2.0L=PcH.〔Pa〕×6.0L PcH=1.0×105 Pa O2 :6.0×10 Pa×4.0L=po〔Pa〕×6.0L Po2=4.0×10 Pa 全圧は,1.0×105 Pa+4.0×10°Pa=5.0×10 Pa (3) 反応前後の物質の量的関係を分圧で考える。 08. CH4 +202 CO2 +2H2O (s) 反応前 〔Pa〕 1.0×105 4.0×100005 変化量〔Pa〕 -1.0×10 -2.0×105 反応後 〔Pa〕 0 2.0×105 1.0×105(無視) 反応後の全圧は、2.0×10 Pa+1.0×105 Pa=3.0×10 Pa 解答 (1)1.0×10 Pa (2)5.0×10 Pa (3)3.0×105 Pa [mL〕| | ル・シャルルの法則 重要

回答募集中 回答数: 0