学年

教科

質問の種類

物理 高校生

付箋の貼ってある式の丸の打ってある「S」はどこからきたのでしょうか?わからないので教えて頂けると幸いです。

114 第2編■熱と気体 239,240 解説動画 基本例題 43 気体の状態方程式 なめらかに動く質量 M [kg] のピストンをそなえた底面積 S [m²] の円筒 形の容器に, 1molの理想気体が入っている。 重力加速度の大きさをg[m/s〕, 大 気圧をpo [Pa], 気体定数をR [J/(mol・K)] とする。 (1) 気体の温度が To [K] のとき, 容器の底からピストンまでの高さ はいくらか。 (2)加熱して気体の温度を To [K] から T [K] にした。 気体の体積の 増加 ⊿Vはいくらか。 指針 ピストンが自由に移動できるから,気体の圧力は一定である。 解答 (1) 気体の圧力を [Pa] とすると 力 のつりあいより ps-pos-Mg=0 pS = pos+Mg 「DV=nRT」 より p(Slo)=RTo ①式を代入して (pos+Mg)lo=RT。 RT。 poS+Mg よって Z= [m〕 (2) 加熱の前後で 「pV=nRT」 を立てて 前: p(St) = RT 後: p (Slo+⊿V)=RT ③② 式より p4V=R(T-To) AV= R(T-To) T RST-T) AS Pos 基本問題 232 気体の圧力 断面積 1.0cm²の円筒形の注射器 に空気を入れ,先端部をふさぐ。ピストンを20Nの力で 押すと内部の圧力は何Paになるか。 ただし大気圧を 1.0 × 105 Pa とする。 Mg To Po 1mol 底面積 S PS 質量 M Posh Mg T RS(T-To) [m³] pS+Mg [参考] 圧力が一定のとき、 体積の変化量 AV と温度の変化量4Tの間には, 「AV=nRAT」の関係がある。 この関 係を用いて解いてもよい。 233 ボイルの法則 圧力 2.0×10 Pa, 温度 27℃, 体積 3.0×10m²の気体がある 温度を一定に保って圧力を1.0×105Paにすると,体積Vは何m²になるか

解決済み 回答数: 1
物理 高校生

核融合反応について、(2)でHの原子量が1であるからHの原子核数はアボガドロ数6.0×10^23個であるという説明がわからないです。噛み砕いて説明してくださるとありがたいです。

図ここがポイント 1000J (1000J/s 1000W) のエネルギーを1時間使ったときのエネルギーのことである。 量は1であるから, アボガドロ数個のHの質量が1gである。 電力使用量 (kWh) とは、毎秒 核融合においても, 反応で失われた質量 4m によるエネルギーE=Amc² が解放される。 Hの原子 347 (1) この反応で失われる質量 4m 〔kg〕は =4.388×10-29kg ⊿m=(1.6726×10-27) ×4-{(6.6447×10-²7) + (9.1×10^31)×2} よって E=mc² = (4.38×10-29) × ( 3.0×10) 20 = 3.942×10-12 ≒3.9×10-12 J (2) H の原子量は1であるから, 1g の H の原子核数はアボガドロ数 るので 6.0×1023個 である。 H 原子核4個によって(1) のエネルギーが解放され N 4 W=EX- ×- = (3.94×10-12) X- =5.91×10"≒5.9×10" J (3)1kWh=1000W x 1h = 1000J/sx3600s=3.6×10° J 6.0×1023 4 であるから, 平均的な家庭が1年間に消費するエネルギーは 300 (kWh)x (3.6×10×12(か月分) = 1.296×10'J よって, 求める年数は (2) の答えを用いて 5.91 x 1011 1.29×1010 ≒46年 である。 1 有効数字は2桁であるが, 途中式や前の答えを引用する ときは1桁多くとる。

未解決 回答数: 0
物理 高校生

0.29g減少するのにそのうち6×10-3gしかα粒子が出ない計算になっているのですが、残りのgは何に変わってしまうのですか?

Cu 者 進入 の する 検 ここがポイント 342 α 崩壊では He の原子核 (a 粒子) を放出する。 崩壊によってポロニウム原子核の数は減少し,残っ 「」に従う。ポロニウムが1個崩壊するたびにœ粒子を1個放出 た原子核の数は崩壊の式「N No (1) ² するので,放出したæ粒子の数は崩壊したポロニウムの数と等しい。原子核の質量は近似的に質量数 に比例する。 崩壊の式の の値が整数ではないときは,両辺の対数をとるとよい。 T 解答 (1)α 崩壊は,原子核が He 原子核を放出するので, 原子番号Zは2,質 量数Aは -4 だけ変化する。 よって 質量数 A=210-4=206 原子番号 Z=84-282" (2) 崩壊の式「N=(1/2) 17」において、原子核の数は質量に比例する。 初めの質量 Mo (= 1.0g), t日後の質量を M〔g〕 とすると 6=(1/2) ² = M₁ ( 12 ) + ² N M No Mo ① t = 69 日 のとき M = 1.0× M=Mol 69 138 1x (12/1)-(2/2) - // 4 m 210 0.29 276 138 √2 2 2 t=276日のとき M = 1.0× 0x (-1/2) =(1/2)=14=0.25g .≒ 0.71g 69日間に崩壊した 288Po 原子核の質量は 1.0-0.71=0.29g 28 Po 原子核と α 粒子 (He 原子核) の質量比は原子核の質量数の比 210:4としてよく崩壊した 288Po 原子核数は放出したα粒子数と等 しいので, 求める質量をm〔g〕 とすると よってm=0.29× -≒6×10-3g 4 210 原子番号 82は鉛Pbなの で,このα崩壊は 2PO206Pb+¹He という反応式で表される。 2 厳密には陽子と中性子の 質量に微妙な差があるが, 本 問ではこの差を無視している ので,質量比=核子数の比= 質量数の比としてよい。

回答募集中 回答数: 0