学年

教科

質問の種類

物理 高校生

青線の部分意味がわかりません。どういう基準で符号を変えているのか?なんでイコールになるのかわかりません。

AU 熱量を加えた K)か の気体の る。 AU を加えたとこ エネルギーの 0 積が増加し こと気体に加 0 co U -3.0x 仕事をする 上がった 気体 例題42 下図のように、物質量が一定の理想気体をA→B→C→A と状態変化させた B→C は等温変化であり, A での絶対温度は300K であった。 (1) B での絶対温度 TB [K] と C での体積 Vcm〕 を求め 715 B (2) A→Bの過程で,気体が吸収した熱量は QB=9.0×10° [J] であった。 気体が外部にした仕事 WAB [J] はいくらか。 また, 気体の内部エネルギーの 変化AUAB 〔J〕はいくらか。 13Cの過程で,気体が外部にした仕事はWic = 9.9×10'[J]であった。気体の 内部エネルギーの変化AUBC 〔J〕 はいくらか。 また,気体が吸収した熱量 Qwe [J] pV=一定などを用いて求める。 はいくらか。 (4) GAの過程で、気体が外部にした仕事 Wea [J] はいくらか。 また,気体の内 部エネルギーの変化 AUc 〔J〕, および気体が放出した熱量 Qca〔J〕 はいくらか。 CA SP 気体が状態変化したときのか,V,Tの求め方 ボイル・シャルルの法則 PV 定理想気体の状態方程式がV=nRT, = T T' センサー 55 ボイル・シャルルの法則 pV_p'V' T T p 〔Pa〕* 3.0 X 105 SP 気体が状態変化したときのQ, W, AU の求め方 状態変化の種類によって成り立つ関係式が異なるので, 注目する状態変化が定積 変化, 定圧変化, 等温変化, 断熱変化のどれかを確認し, まとめの式 (p.119) を用いる。 -=一定 センサー 56 定積変化のとき, W = 0 1.0×105 ●センサー 57 等温変化のとき, AU=0 A₁ C 0 0.030 Vc V[m³] 【センサー 58 定圧変化のとき,W=pAV (1) ボイル・シャルルの法則より (1.0×10)×0.030_ (3.0×10) x 0.030__ (1.0×10 ) × Vo 300 TB To また、B→Cの過程は等温変化だから, TB = Tc ゆえに, TB = 9.0×102〔K〕,Vc = 9.0×10^2[m²]| (2) 定積変化だから, WAB = 0 [J] である。 熱力学第1法則より, AUAB=QAB-WAB=QAB-0=9.0×10°〔J〕 (3) 等温変化だから,4U.Bc=0[J] である。 熱力学第1法則より, QBC=AUBC+WBC=0+WBc = 9.9×10°〔J〕 (4) C→Aの過程で気体が外部にした仕事は, WcA=pAV=1.0 × 10 x (0.030-0.090) = -6.0×10°[J] また, A→B, CA の過程での温度変化を, それぞれATAB. ATCA とするとATeATAB 気体の内部エネルギーの変化は温変化に比例するので, そ の比例定数をすると. AUcA=kATcA=-KATAB = -4UAB = -9.0×10°[J]| 熱力学第1法則より, 気体に加えられた熱量 Q'cA [J] は, Q'CA=4UcA+WcA= -9.0×10°-6.0×10°= -1.5×10'[J] よって, Qca = 1.5×10'〔J〕 14 14 気体の状態変化 121

解決済み 回答数: 1
物理 高校生

力学についての質問です。 写真の問題の(3)について、解答では物体A・Bの運動エネルギーと弾性力の力学的エネルギーが保存されることを用いて答えを出しています。 私は、物体Bには弾性力しか働いていないため物体Bのみで考えても力学的エネルギーが保存されると考えたのですが、何が... 続きを読む

B 196. ばねと衝突■ 図のように, 小球A,B,Cが 一直線上に並んでいる。 A, Cの質量をm, Bの 質量をMとする。 AとBは, ばね定数kの軽いば 100000000 ねでつながれている。はじめ,ばねは自然長であり,A,Bは静止している。また,A は壁に接している。 小球の運動は一直線上でおこり, 床はなめらかであるものとする。 ○(1) Cが左向きに一定の速さで運動し,Bと弾性衝突をした後,運動方向を右向き に変えた。 この衝突直後のBの速さVを, m, M, vo を用いて表せ。 X (2) (1) の衝突の直後から, Bの運動に伴い, ばねはいったん縮んだ後、 再び伸びて自然 長にもどる。 この間に壁がAに与える力積の大きさを,Vを用いて表せ。 X(3) ばねが自然長にもどった後,Aは壁をはなれ ばねは伸縮を繰り返しながら, 全体 として右向きに運動する。この運動でばねが最も縮んだときの自然長からの縮み,お よびそのときのA,Bの速さを,Vを用いてそれぞれ表せ。 ヒント 194 三角関数の加法定理, sin(a+β)=sinacosβ+cos asinβ を利用する。 195 小球と台をまとめて1つの物体系と考えると,運動量の水平成分の和は保存される。 196 (3) ばねが最も縮んだとき,A,Bの速さは等しい。 C (13. 神戸大改) 例題14

未解決 回答数: 1