学年

教科

質問の種類

物理 高校生

(4)について質問です。 ベクトル図で考え、tanθ=R(ωC-1/(ωL))と逆にして書いたのですが、これは正解なのでしょうか? ωCV_0とV_0/ωLの大小が分からないので正解だろうと予想しましたが、 不安だったので質問しました。

138. 〈RLC 並列回路〉 10) 図のような, 交流電源, コイル, コンデンサー, 抵抗からなる 回路について考える。 交流電源の交流電圧の最大値を Vo〔V〕, 角 周波数をw [rad/s〕, コンデンサーの電気容量をC[F], コイルの 自己インダクタンスをL [H], 抵抗をR [Ω], 円周率をとする。 電流は図の矢印の向きを正とする。 また時刻 t〔s〕において交流 電源の電圧 V〔V〕はV=Vosinwt, 交流電源から流れる電流は I〔A〕であるとする。コイル, コンデンサー,抵抗に流れる電流 をそれぞれ IL 〔A〕, Ic〔A〕, IR〔A〕 とし, その最大値をそれぞれ ILo〔A〕, Ico〔A〕, Iko〔A〕 とす る。十分な時間が経過しているとして,次の問いに答えよ。 (1) 電流の最大値 Ito, Ico, Iro をそれぞれ Vo, w, C, L, R の中から必要なものを用いて表せ。 (2) 時刻 t において, 流れる電流I, Ic, In をそれぞれ Ito, Ico, IRo, w, tの中から必要なも のを用いて表せ。 (3) 電流 I を I, Ic. IR を用いて表せ。 (4) 0 [rad〕を電圧(Vの位相に対する電流の位相の遅れとして, I を Vo, w, C, L, R, t, Qを用いて表せ。また, tanθ を w, C, L, R を用いて表せ。 次の三角関数の公式を用いて もよい。 asinx-bcosx=√a²+busin (x-9), cos0= a √a² +6² [ 10 大阪教育大 〕 9 IL VIC L C b √a² + b² sing= VIR (5) 図の回路のうち, コイル, コンデンサー, 抵抗からなる並列回路のインピーダンス Z〔K〕 をw, C, L, R を用いて表せ。 (6) (5)のインピーダンスZが最大となるような角周波数 wo [rad/s] を求めよ。 [20 福井大

解決済み 回答数: 1
物理 高校生

物理の直流回路に関する問題です。 (2)についてです。 十分時間後コンデンサーに電流がこれ以上流れ込まなくなると、全ての電流が再び左半分の回路に流れるようになると思ったのですが、解説では2Rに流れる電流が最初と異なっています。 理由をどなたか分かりやすく教えて欲しいです... 続きを読む

チェック問題 2 コンデンサーのスイッチの切りかえ 標準 10分 はじめ、すべての電気量は0で ある。 図の回路で, (1) スイッチを閉じた直後に2R の抵抗を流れる電流I を求めよ。 解説 (1) 「スイッチを閉じた 「直後」というのは「コンデンサー に電流が流れ込み始めたが, だ電気量は0である」というこ とだね。 図のように作図する。 2Rに流れている電流I の一部 がiに,残りがI-iとなって いることに注目しよう。 ⑦ : +2RI+iR-V=0 イ:+0+0+(I-i)R-iR=0 2V V .. ]=- 答i=5R 5R (2) 「十分時間後」というのは「も はやこれ以上コンデンサーに電 流は流れ込まない」ということ だね。図bのように作図するぞ。 ア:+2RI'′+I'R-V=0 ① : + V1+V+0-I'R=0 __:-CV1+2CV2 図b = 0 V (2) 十分時間後のコンデンサー Cの電気量Qを求めよ。 R (3)(2)の後,スイッチを開いた直後にRの抵抗に流れる電流 を求めよ。 図 a 2RI ア スイッチ i ON! 直後 ア 2RI' 2R R |十分時間後 iR イ (I-i) R 図a I' I'R 0 Ho Hot C I-i 流れない 0 カラ 0 2C 0 0 0 カラ +CV1 CV -CV1 +2CV2 2C QV2 -2CV₂

解決済み 回答数: 1
物理 高校生

物理の薄膜による干渉の問題です。 写真3枚目、(8)の「m=0ではiを大きくしたときに次の極大点を取り得ない」というところの理由が分かりません。 m=0のとき光路差はちょうど半波長になると思いますが、このとき入射光を大きくしても、干渉光が再び最大の明るさになることはないとい... 続きを読む

12光 991.〈薄膜による光の干渉〉 図1に示すように,空気中で水平面上に置かれた屈折率 n の平坦なガラ (1) ス板の上に,屈折率 n で一様な厚さdをもつ薄膜が広がっている。波長 の単色光を薄膜表面に対して垂直に入射させ,薄膜の上面で反射する光線 ① 空気 と。薄膜とガラス板の間の平坦な境界面で反射する光線②の干渉を考える。 光線①と光線②が干渉して生じた光のことを干渉光とよぶ。いま,空気の屈 折率を1とし,n>n>1 の場合を考える。 屈折率 n1, n2 が光の波長によっ て変わらないとして,次の問いに答えよ。 薄膜 (2) (1)薄膜中の光の波長 入 を, n1, 入。 を用いて表せ。 (2)薄膜の厚さを0から連続的に増していくと, 光線 ①と光線 ② からなる干渉光は,強めあっ て明るくなったり,弱めあって暗くなったりした。 干渉光の明るさがん回目の極大となっ たときの薄膜の厚さ dk を, n1, do, k (k=1,2,3, ・・・) を用いて表せ。 (3) 薄膜の厚さ dk のときに, 入射する単色光の波長を入から短くしていくと, 干渉光は一度 暗くなった後,再び明るくなり極大となった。 このときの入射光の波長入を 入o, kを用 いて表せ。 13 14 (4) (3)の観測において,入射光が入。=500nmで明るかった干渉光は、波長を短くしていくと, 一度暗くなった後, A2=433nm で再び明るくなった。 薄膜の屈折率を n = 2.0 として 波 73 の厚さdkの値を求めよ。 次に,図2に示すように, 波長入 の単色光を薄膜表面の法線に対 して入射角(i<90°)で入射させた。このとき,薄膜の上面で反 射する光線 ① と, 薄膜の上面において屈折角で屈折して薄膜とガ ラス板の間の平坦な境界で反射し、薄膜の上面に出てくる光線②と の干渉を考える。 これらの光線は図中の点 A1, A2 において同位相 であるとする。 図2 (5) 薄膜の屈折率 n, 入射角i, 屈折角の間の関係式を示せ。 (6) 光線①と光線②の干渉光が強めあって明るくなる条件を,屈折角 1,屈折率 n, 厚さd, 入射光の波長 入と整数m (m=0, 1 2 3 ) を用いて表せ。 (7) (6)の条件を,入射角i,屈折率n,厚さd,入射光の波長 入と整数m (m=0,1,2,3, ・・・) を用いて表せ。 (8) 垂直入射(入射角 i=0°) で明るかった干渉光は入射角を大きくしていくと,一度暗 くなった後、再び明るくなり極大となった。このときの入射角を i=i としたとき、ふと 薄膜の屈折率 n1, 整数mが満たす関係式を求めよ。 ①1 空気 薄膜 ガラス板 ガラス板 図 1 法線 法線 A [17 大阪府大改]

解決済み 回答数: 1
物理 高校生

Bの(1)の問題で、答えは写真の通りです。友達にQin=ΔU+Woutの方法を教えてもらい、そのやり方でやってみたのですが、このやり方だと状態C→Bで仕事をするので、その分の熱量が加わると思うのですが解説見ると含まれていません。どのように考えればいいか教えてください。 参考... 続きを読む

~ N1, の気 これ を $ F, 必68. 〈等温変化 ・ 定積変化・定圧変化 > なめらかに動くピストンがついた円筒容器内にn [mol〕の 理想気体が入っている場合を考える。 気体は外部から熱を吸 PA 図 1 収したり, 外部へ熱を放出することができる。 理想気体の内 部エネルギーは, 分子の数と絶対温度 T [K] のみで決まる。 この理想気体の定積モル比熱 Cv_[J/(mol・K)〕 や定圧モル比 Cp [J/mol-K)] は,温度によらず一定である。 気体の圧 カ [Pa] と体積V[m*] の関係を表した図(図1)を参照し て,次の問いに答えよ。 気体定数はR_J/(mol・K)〕 とする。 〔A〕 温度の等しい状態Aと状態Bを考えよう。最初、気体は圧力 ^ [Pa], 体積 Va [m²], 温度 T 〔K〕 の状態Aにある。 状態Aから状態B(圧力 DB [Pa], 体積 VB 〔m²〕,温度 T1, ただし VB<VA)に達する過程はいろいろ考えられる。 過程 I は, 等温変化により状態A から状態Bへ変化させる過程である。 過程Iで気体が外部からされた仕事を W 〔J〕, 外 部から吸収する熱量を Q1 〔J〕 とする。 このときW と Q の間に成りたつ関係式を求めよ。 〔B〕状態Aから状態Bへ変化させる過程ⅡIⅠは,まずピストンを固定して外部から気体に熱 を与えて状態Aから状態 C (圧力 DB, 体積 VA, 温度 T2 〔K〕) まで変化 (定積変化) させ, そ の後圧力を一定に保ちながらピストンを動かして状態Cから状態Bへ変化 (定圧変化) さ せるという過程である。 PB(T=T₁) II DB 0 III D 1 VB I III C(T=T₂) II A(T=T₁) VA V (1) 過程ⅡIで気体が外部から吸収する熱量 Q2 〔J〕 は, 状態Aから状態Cへの変化で気体が 外部から吸収する熱量と, 状態Cから状態Bへの変化で気体が外部から吸収する熱量の 和で求められる。 Q2 を Cv と Cp などを用いて表せ。 (2) 過程ⅡIで気体が外部からされた仕事 W2 〔J〕 , DB, VB, V』 を用いて表せ。 (3) (2)の結果と熱力学第一法則を用いて,過程ⅡIで気体が外部から吸収する熱量 Q2 を求め,

解決済み 回答数: 1