学年

教科

質問の種類

物理 高校生

⑵の解説のなぜP1とP2 が図のように振動するのかがわかりません。教えてください

-40 -43 0.98~101 EN (開 r [解説] √=fR V 考察 B5⑤ 158 (1) 考察A: 3③ 考察 C⑧ (2) 4 (3) 3 注目する。 指針 初めて見る実験題材は,発生する現象を問題文から読み取るこ とが重要。 この問題は共鳴の問題であるから,定在波の腹節の位置に 1000≧ 73346 1000 (2) 観察・実験Ⅰ・Ⅱより,パイプ おんさ P1,P2 から発生する音波 の振動数はいずれも1000 Hz 以下 であるから、その波長は 0.34m 340 以上である。 したがって, P1, P2 入 270.34 (1) 考察 A: パイプおんさ P1, P2 を同時に鳴らせたとき, 1 パイプおんさ Pi. P2はU 秒間のうなりの回数は1回未満であったことは, 字型の加工部分が共通して P1, P2 の振動数の差が1Hz 未満であることを示いるため, 発注する音波の している。 よって ③ 振動数は一致している。 Pi 考察 B: パイプおんさ Pi の下端(開口部)を手でふさい で閉管にしたとき共鳴音が大きくなったことは, 下端(開口部) 付近が定在波の節の位置であること を示している。 よって, ⑤ 考察 C : パイプおんさP2 の下端(開口部) を手でふさい で閉管にしたとき,共鳴音が小さくなったことは、 下端(開口部) 付近が定在波の腹の位置であること を示している。よって, ⑧ 3 の長さの差16cmの間に一波長 4 2.30** 23cm 251 P1 P2 WALIT 158) センサー44 センサー 45 16 cm 開口端補正 が含まれている可能性はないので、 気柱内に生じる定在波は図のよう になる。 開口端補正を1.0cm 程 度と仮定しているので,発生する 音波の波長は -x3=16 入 = (16+1.0)×4=68[cm]=0.68〔m〕 7:16/1/u=faより P1 のおおよその振動数は, 340 21.3cm [f= +=500[Hz] ④ 0.68 70,21m (3) 下端(開口部)を手でふさいだときに音量が大きくなる位置 (3) 20.4は、定在波の節の位置である。その位置はパイプおんさ P1 をみたしていたより=波長(34 cm)程度長い位置である。よって,③ 39cm (音波変位で 表している) ^ 4 p が節だと ちゃんと共鳴して 音大きくなる 16cm+1g 1.7-4 0.0 0.8 23cml 134c 各8cm t = (C sirve (2)より 7=6 132

回答募集中 回答数: 0
物理 高校生

(2)の解説 方程式の文字の値をすり替えるって、、、方程式のルール的に完全アウトじゃないですか? これなんでOKなんですか?

56 基本例題 30 絶対値と不等式 次の不等式を証明せよ。 (1) |a+b|≦|a|+|6| (2) |a|-|6|≦|a+bl 指針 (1) 前ページの例題29と同様に(差の式)≧0 は示しにくい。 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0のとき の方針で進める。また,絶対値の性質(次ページの①~⑦) を利用して証明しても よい。 (2)(31)と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 [2] 方法をまねる la+b≧(lal+|6|)² (3) la+b+cl≦la|+|6|+|el ●基本 29 重要 31 A≧B⇔A'≧B'⇔A'-B'≧0 (1) (lal+ b)²-la+b|²=a²+2|a||b|+6²-(a²+2ab+6²) |◄|A³=A² 解答 =2(labl-ab)≧0 |ab|=|a||6| ...... よって 00000 よって la+b≧0, lal +6 ≧0 から la+6|≦|a|+|6| この確認を忘れずに。 別解] 一般に,|a|≦a≦|a|-|6|≦b≦|6| が成り立つ。 | A≧A, |A|≧-A この不等式の辺々を加えて から-|A|A|A| -(|a|+|6|)≦a+b≦la|+|6| したがって la+b|≦|a|+|6| (2) (1) の不等式でαの代わりにα+6, 6 の代わりに - b とおくと |(a+b)+(−b)| ≤|a+b|+|−b| よって |a|≦la+6|+|6| ゆえに |a|-|6|≦la+6| [別解 [1] [a|-|6|<0のとき a+b≧0であるから,|a|-|6|<la+6|は成り立つ。 [2] |a|-|6|≧0のとき |a+b-(|a|-|6|)²=a²+2ab+b²-(α²-2|a||6|+62) =2(ab+lab)≧0 よって (|a|-|6|)≦|a+b² |a|-|6|≧0,|a+b≧0であるから |a|-|6|≦la+b1 [1], [2] から |a|-|6|≦|a+b| (3) (1) の不等式での代わりにb+c とおくと la+b+c)[≦la|+|b+cl la+b+cl≦|a|+|6|+|c| ≦|a|+|6|+|c| -B≤A≤B ⇔|A|SB ズーム UP 参照。 <|a|-|6|<0≦la+bl [2] の場合は, (2) の左 辺, 右辺は0以上であ るから, 右辺20 を示す方

解決済み 回答数: 1
物理 高校生

青線で囲った部分、n+1じゃなくて、nじゃないですか? 最高次の項をnだと置いているから、a(x+1)∧n-ax∧nじゃないんですか? ここがnだとどういけないんでしょう

42 重要 例題 21 等式を満たす多項式の決定 多項式 f(x) はすべての実数xについてf(x+1)f(x)=2x を満たし, f(0)=1 [一橋大] であるという。このとき, f(x) を求めよ。 指針 例えば、f(x) が2次式とわかっていれば, f(x)=ax2+bx+c とおいて進めることが できるが,この問題ではf(x) が何次式か不明である。 →f(x) は n次式であるとして, f(x)=ax+bx-1+...... (a=0, n ≧1) とおいて 進める。 f(x+1)f(x) の最高次の項はどうなるかを調べ, 右辺2x と比較するこ とで次数 n と係数 αを求める。 なお, f(x) = (定数) の場合は別に考えておく。 f(x)=1 f(x)=c (cは定数) とすると, f(0) =1から 解答 これはf(x+1)f(x)=2x を満たさないから,不適。 よって, f(x)=ax+bx-1+..... (α= 0, n ≧1)(*) とす ると f(x+1)f(x) =a(x+1)"+6(x+1)"'+......-(ax+bx-1+......) =anx-1+g(x) ただし,g(x) は多項式で,次数はn-1より小さい。 f(x+1)f(x)=2xはxについての恒等式であるから,最 高次の項を比較して ・①, n-1=1 ...... ( an=2...... ②② よって 2x+6+1=2x この等式はxについての恒等式であるから b+1=0 すなわち b=-1 したがって f(x)=x-x+1 基本15 この場合は, (*) に含ま れないため, 別に考えて いる。 ◄(x+1)" 練習 f(x) は最高次の係数が1である多項式であり 定 ④ 21 f(x2)={f(x)-ax-b}(x²-x+2) が成り立 びα bの値を求めよ。 ①から n=2 ゆえに、②から a=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)f(x)=(x+1)+6(x+1)+c-(x2+bx+c)c=1としてもよいが, =2x+6+1 結果は同じ。 =x"+nC1x"-1+nC2.xn-2+... のうち、 n+1/ a(x+1)" -αx" の最高 次の項は anx-1 で, 残 りの項はn-2次以下と なる。 anxn-1と2x の次数と 係数を比較。 POINT 次数が不明の多項式は, 次と仮定して進め 係数比較法。 有効 し、常 5 基本事 12 3 2

未解決 回答数: 1
物理 高校生

物理、重要問題集の44の(4)で 解答のF=k(L-L0)=mg、つまり弾性力が重力と等しくなる理由を教えてください!

標準問題 A 必解 44. 摩擦のある回転台上の物体〉 水平面で回転できる回転台があって、 回転台水平面上の回転中心を点Oとする。 質量 m [kg] で大きさの無視できる物体Aを. 回転台上で点Oから [m]の点Pに置く。 物体と回転台の間の静止摩擦係数をμ. 重力加速度の大きさを g 〔m/s²] として,次の問い に答え (1) 回転台が回転していないとき, A にはたらいている力を図によって示せ。 (2) 回転台を角速度w [rad/s] で回転させる。 Aが点Pですべらないで回転台とともに回転 しているとき, Aにはたらいている力を, 回転台上でともに回転しながら観測するときと 回転台の外で観測するときとで, それぞれどういう力が観測されるか。 図によって示せ。 (3) 前問 (2)の状態からを徐々に上げていったら, w=w [rad/s] でAが点Pからすべりだ した。 μをlo, g, wo を使って表せ。 (4) 長さ 〔m〕 のつる巻き状のばねがあって,これにAをつるすと長さが 〔m〕 に伸びる。 ばねの一端を点0につけ, 他端にAをつけて回転台に置いた。 ばねの長さがZ] [m〕に伸び ているとき, Aが回転台上をすべらないで回転できるの大きさの範囲を答えよ。 μは1 より小さく, ばねと回転台の摩擦はないものとし, また, ばねの質量は無視できるものと する。 必解

未解決 回答数: 1
物理 高校生

解説の7行目が分かりません。

例題 大腿四頭筋の収縮力は,腱を介し膝蓋骨によって方向をかえ, 脛骨に伝えられ けいこつ だいたいよんとうきん けん かい しつがいこつ る。大腿四頭筋が脛骨におよぼす力テは、下図のような配置のときに300N であった。膝蓋 骨が大腿骨におよぼす力の大きさと向きを求めよ。 (解答)図5で,右上30°方向に向かう力と右下70°方向に向かう力との合力を求める。 合力を幾何学的に求める方法は、図5に小さく挿入したが,解析的に求めるには次のように する。 右上30°方向に向かう力テと右下70°方向に向かう力の成分,y成分それぞれの和を 求めれば,次のようになる。 ΣF = T₁ cos 30° +T³ cos(−70 °) =300Nx(cos30°+cos(−70°)) = 362.4N Fy=Tsin30°+TB sin(−70°) =300Nx(sin30°+sin(−70°)) =-131.9N 合力の大きさは F = √362.4°+(-131.9) N=385.7N tan0 = であり,その向きは -131.9 362.4 :.0 = -20° =-0.364 ?? 膝蓋骨 TA \30° 大腿骨 170° ベクトル TB 脛骨の合成 図5 ひざにかかる力のつりあい 運動し (答: 385.7N,右下20°) 上のような問題では,略図を描いて考えることが大事である。 図 きれいに描く必要はない。 大事なことは,系の重要な部分が図中に され,解に関係するベクトルがすべて矢印で表わされていることで る。略図なしで問題を解こうとすることは、電話で将棋対局をする うなものであり,初心者のうちはやめておいた方がよい。

回答募集中 回答数: 0