学年

教科

質問の種類

物理 高校生

円運動、 垂直抗力の正負がほんとに分からないです、この写真のときの、問題でなんで違うんですか。自分で図を書いても意味がわかりません。どなたか図で教えてもらえませんか?

9 3 13 遠心力に関係した身近なも T から見 ang 鉛直面内での円運動 右図のような, 半径r[m]のなめらかな円筒面に向 て質量m[kg]の小物体を大きさ [m/s] の初速 度でなめらかな水平面からすべらせる。 重力加速度の 大きさをg[m/s ] とする。 (1) 鉛直線となす角が0の点(図の点C) を通過すると L A CO 遠心 0 1933 きの小物体と面から受ける垂直抗力の大き AUDIO さを求めよ (2) 小物体が点Bを通過するための の条件を求めよ。 ●センサー 39 円運動では,地上から見て 解くか、物体から見て解く かを決める。 ① 地上から見る場合 遠心力は考えず、力を円の 半径方向と接線方向に分解 し、円運動の半径方向の運 動方程式を立てる。 小井 生ブ か または mr²=F ②物体から見る場合 遠心力を考え、力を円の半 径方向と接線方向に分解し, 5 136 半径方向のつり合いの式を V² m-=F Y HARENTE 立てる。 ※どちらでも解ける。 ●センサー 40 物体が面に接しているとき, 垂直抗力 NO (1) 水平面を重力による位置 エネルギーの基準面とする。 先生にきく 2 mvo ■解答 (1) 点Cでの小物体の速さを [m/s] とすると, 力学的エネルギー 保存の法則より 1 1 = 2 m ゆえに, v=√√√v²-2gr (1+cos) [m/s] F 基準 fr mv²+mg(r+rcose) Vo 3 54 ora ・① 垂直抗力の大きさを/〔N〕 とすると, 地上から見た円運動の運動方程式は, 129 134 138 B A v²-4gr Bmgcose N rcos00 O r [8] mg OmN+mg cos の これにを代入し, 整理すると, 2 mvo N= - mg (2+3 cose) (N) ...... 14 物理 r 別解 小物体から見ると,円の半径方向にはたらく力は、実際丁( にはたらく力のほかに、円の中心から遠ざかる向き start 基準位置 N+mg cose m-0(量的関係は上と同じ) r 9 遠心力がはたらいている。 半径方向の力のつり nof SA 合いより 非等速円運動では,円の接線方向にも加速度があり,物体か ら見た場合,接線方向での力のつり合いを考えるためには、接 線方向にはたらく慣性力を考える必要がある。 (2) (1)より、0 Nはともに減少していく。点Bを通過するためには、点B でぃ > 0 かつ N≧0であればよい。①より①=0を 代 入して、 v= では, 0 が小さくなるにつれて,v, ≦z〔rad] なんで2乗外して?COSO°=1M=

解決済み 回答数: 1
物理 高校生

落下運動の問題です。 例題7の(2)のピンクマーカーの式で、なぜマイナスが付くのか分かりません。 投げ上げているので、鉛直投げ上げの式を使うのは分かりますが、再び地面へ落下しているので、鉛直投げ下ろしの式は使わないのですか。 解説宜しくお願いします。

例題 7 鉛直投げ上げ 基本問題 39, 標準問題 41 地面から、鉛直上向きに速さ19.6m/sで小球を投げ上げた。 重力加速度の大きさを9.80m/s2 とする。 投げ上げてから, 最高点に達するまでの時間は何sか。 また, 最高点の高さは地面から何mか。 (2) 投げ上げてから、 再び地面に落下するまでの時間は何 また, 落下する直前の速さは何m/sか。 か。 投げ上げた位置を原点とし、 指針 鉛直上向きを正とするy軸をとって, 鉛直投げ上げの公式を利用する。 解説 (1) 最高点で小球の速さは 0 となる。 求める時間をt [s] とする と,「v=v-gt」において, v=0m/s, vo=19.6m/s, g=9.80m/s2, t=tなので, 0=19.6-9.80 × t t₁ =2.00 s 最高点の高さy[m]は, 「y=vot-1/2/2gt2」において, v=19.6m/s,t=t=2.00s,g=9.80m/s2 なので, -×9.80×2.00² y=19.6m y=19.6×2.00- (2) 求める時間を[s] とすると, 「y=vol-1/12912」に おいて, y=0m, vo=19.6m/s,g=9.80m/s² なので, y y 最高点 速さ0) OF 19.6m/s |0=19.6×tz 2 ×9.80×1² t₂(t₂-4.00)=0 t=0, 4.00 4.00s ( 2 = 0 は,投げ上げたときであり, 解答に適さない) 求める速さv[m/s] は, [v=v-gt」において, v=19.6m/s,g=9.80m/s2, t=4.00sなので, v=19.6-9.80 × 4.00 v=-19.6m/s 19.6m/s (vの負の符号は,鉛直下向きであることを意味する) 別解 (2) 運動の対称性から, 「地面から最高点に 達する時間」=「最高点から地面に落下する時間」なので, t=2×2.00=4.00s 基本問題 第 I 同様に, 運動の対称性から, 「地面から投げ出されたと きの速さ」=「地面に落下してきたときの速さ」 なので, v=19.6m/s 章 運動とエネルギー

解決済み 回答数: 1
物理 高校生

青線の部分を計算しても答えがでません。途中計算を教えてください。全然合いません答えが

N サー41 ナー42 を質量 して考 ・2d. 考え ( L-L 153 別解 初めてx=dとなるときに物体Bが物体Aから離れる から (2) の結果より (2) P: よって、 (1) L-200 4 g d= -2d cos 2d 2π となるから, t= t= 3 /2m V 3k Vo √3k 12m 3k 2 g /2m [m] t ゆえに COS (m), Q: [s], Q: 2π 2 /2m ・200 3k 2 3 /2m (2) 求める P Q の単振 動の振幅をそれぞれ Ap[m], AQ〔m〕 とする。 運動を始めたとき,P, Q はともにつり合いの 位置にあり, ばねが最 も縮んだとき,P, Q は重心Gに対して静 止する。 P, Q の質量 の比は1:2より,ど ちらの場合もGはPQ を2:1に内分する点 となるから, Ap= Vo 12m ✓ 3k /2m 3k [s] [m〕 OH P 27T (3) P: 27 指針 (1) 外力による力積が加わらないため, つながれた小球P Q の重心Gは等速直線運動をする。 ばねが最も縮んだとき, P, Qの速度 は重心の速度に等しくなる。 (2), (3) P, Qは,重心に対して単振動する。 g 2d Ap 3 √ 解説 (1) 右向きを正とし, ばねが最も縮んだときの小球 P, Q の速 (1) 度をV/[m/s] とする。 運動量保存の法則より, mvo+2m(vo)=mV+2mV Vo これより, V=- 3 求めるばねの長さをL'[m]とすると, 力学的エネルギー保 存の法則より, m² +2m² = k (L-1)³ + ½m-3) •2mv²= k(L-L')² t = - 2d g ゆえに,I'=L-200 '[m] (L'は不適) √ 3k L -[s] 1 2 2 of color and + 12.2m ( - 20/0 3 12/2300 ammino L' 002 (53) センサー41 ●)) センサー 42 AQ つながれた小球P. Qの重心の速度を v[m/s] とすると c =Vである。 G は水平左 向きにの速さで等速 直線運動をしている。 10

解決済み 回答数: 1