学年

教科

質問の種類

物理 高校生

(3)の、1−Qh分のQc<1 がわかりません。お願いします。

数が十分 0 ステンフ した熱量を求めよ。 球を水に入れると (3) この水を利用して水力発電を行うとして,得られる出力 (仕事率) P〔W〕を求めよ。 ただし、水車の効率は50%とする。 <-> 129, 130 138 熱機関の効率装置Aは,絶対温度 T [K] の高温熱源か ら熱量 On [J]を受け取って一部を仕事 W [J] として取り出すこと ができ,熱量Qc [J] を絶対温度 Te [K] の低温熱源に放出する理想 的な熱機関である。 WHO SU (1) 装置Aの内部エネルギーの変化はないものとして,Q, Qc, W の間に成りたつ関係式を示せ。 Qb, Qc, W はいずれも正の値を ZU とるものとする。 高温熱源 Tw Qu 装置A Qc 低温熱源 Tc W (2) 装置Aの目的は仕事を取り出すことであり,より小さな熱量をより大きな仕事に変 換できると効率がよいといえる。 高温熱源からの熱を仕事に変換する熱効率 es を QkQc を用いて表せ。 (3) 常に熱効率 e < 1 となることを (2)の結果を用いて説明せよ。 [16 奈良女子大改] 132 ヒント 134 30℃ で, 定規が示す 「3400mm」 の長さは, 3400mm よりわずかに大きい。 135 (1) 水と鉄製容器の熱容量をそれぞれ求め,足しあわせる。 MERAS TO 136 10s から 50sまでは温度上昇がなく, 与えた熱量はすべて氷の融解熱に使われている。 137(1) 1m²の水の質量は 1.0×10kgである。 0601 138 (1) 装置Aが吸収した熱量はQnQc となる。

解決済み 回答数: 1
物理 高校生

⑵です。 赤下線部って0になりますか? 他の回答など見ると0なのでどうして0になるか教えてもらいたいです。

発展例題5 斜面への斜方投射 物理 図のように,傾斜角0の斜面上の点Oから, 斜面と垂直な 向きに小球を初速。 で投げ出したところ、小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 に答え 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 解説 (1) 斜面に平行な方向 にx軸、垂直な方向に y軸をとる (図)。重力 加速度x成分,y成 分は,それぞれ次のよ うに表される。 (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 y -gcost. gsino y成分:-gcose x 成分 : gsino 方向の運動に着目する。 小球が斜面から最も はなれるとき, 方向の速度成分 by が 0 となる。 求める時間をとすると, vyvo-gcosd・tの 式から, 0=vo-gcosot t₁ =- Vo gcoso (2) Py=0 の点であり, 落下するまでの時間 をたとして, y=vot-1/2gcoso.2の式から, 発展問題 0=vot₂-19 cost 10=t₂ 8-(5-90058-1₁) Vo coso.12 t> 0 から, t₂ = 2vo gcoso x 方向の運動に着目すると, ら, OP間の距離xは, 発展問題 48,52 Vo 0 11/13gsi x= gsino・t2か 0 1 29 sine.t₂²= 2v² tan0 gcoso QPoint y方向の等加速度直線運動は,折り 返し地点の前後で対称である。 y=0 から 方 向の最高点に達するまでの時間と、最高点から 再びy=0 に達するまでの時間は等しく, t=2tとしてt を求めることもできる。 200 19 sine. (cose ) P

解決済み 回答数: 1
物理 高校生

(5)の問題についてです。 解説には-Ecos60°と書かれているのですが、なぜ-がつくのですか?

出題パターン 60 一様な電界 図のように,大きさE (N/C〕の一様な電界中に 3点A,B,Cを考える。 電界の向きはAからBA に向かう向きで,AB=BC=CA=1〔m〕 である。 このとき次のものを求めよ。 (1) B点に電気量 g 〔C〕の正の電荷を置いたとき に受ける電気力の大きさ(N)。 大量①8-8 (2) 電気量α 〔C〕の電荷をゆっくりとB点から (J)。 (3) B点に対する A 点の電位 VAB 〔V〕。 (4) B点に対する C点の電位 VcB (V)。 仕事の (5) A点に対する C点の電位VcV中国金 CACHOR NASUSREOXETINE 解答のポイント! (1) では電界の定義 (2)~(5) では電位の定義: No.2を用いる。 では負となり ... REGO きさで逆向きの外力 αE 〔N〕 を加える必要 がある (図 18-8)。 この外力を加えつつ1 [m] 動かすのに要する仕事は QEl 〔J〕 (3) 電位の定義: No.2より,B点から点ュアル まで +1Cをゆっくり運ぶのに要する仕事 が VAB なので, (2) よりg=1 とおいて, VAB = El[V] (4) 同様にB点からC点まで+1Cをゆっく万 り運ぶのに要する仕事が求める電位で, S V=-Ecos60°・L=-123EL〔V〕 外力のAC 成分 距離 解法 (1) 電界の定義より,電界E 中に+1Cを置くと電気カE〔N〕 を受ける。よっ て,+α〔C〕を置くとその倍のqE [N] を電界と同じ向きに受ける。 (2) ゆっくり運ぶには, (1) の電気力と同じ大 E (2)の移動 方向 外EC - (5) の移動 AqE 60% +1CRETE +α[C]電界E 0 +1C 外力+ 図18-8 60% (4)の移動 方向 Van = Ecos60°・L=/1/23EL[V] 外力のB→C 成分 距離 (5) A点からC点まで +1Cをゆっくり運ぶのに要する仕事が求める電位で B

回答募集中 回答数: 0