学年

教科

質問の種類

物理 高校生

物理基礎です 12と13がわかりません 解説お願いします🙇🏻 自分で解き直ししたやつ一応のせておきます

4.2 1,26 1.26 206 25'206 292 2 0.97 300) 2920 2700 5145.2× > 4.52² 44,52×10 (455 【11】 熱容量 40J/K の熱量計に 200gの水を入れ、温度を測定すると 20.0℃であった。 その中に 73.0℃に 熱した 60g の金属球を入れると,全体の温度が23.0℃で一定になった。 水の比熱を4.2J / (g・K) とする。 (1) この金属の比熱を有効数字2桁で求めよ。(40+200×4.2×3)=60x×56=0.97 200 (2) この測定後、長い時間が経過して熱が逃げ, 全体の温度が22.0℃に下がった。 この間に逃げ た熱量を有効数字2桁で求めよ。 (40+200×42×3+60×72×80) 80+252=300~ 360℃=292 て 【12】 水の入った容器の中の羽根車をおもりの落下によって回転させ、水 40+252+2910 の温度上昇を測定する。 水と容器と羽根車の熱容量は2.1×102J/K, おも りの質量は2.0kg である。 おもりをゆっくりと1.5m 落下させる実験を 7000 50回くり返したとき, 容器中の水温は何℃上昇するか。 ただし、重力加 速度の大きさを9.8m/s2 とし,重力がおもりにした仕事は, すべて温度 の上昇に使われるものとする。 22.0×2.0×10÷t=980 ( 4,2 3300 900 2260 2160 容器 2970 292 3202 ・3.2x おもり 水 羽根車

回答募集中 回答数: 0
物理 高校生

(5)の単振動、最大の速さについての質問です!解説は理解出来てますが、2枚目にあるように単振動の位置エネルギーで表せないのはなぜですか?

114 力学 38 単振動 水平面内において一定の角速度ので 回転している円板がある。 円板上には, 半径方向にみぞが掘られており、その中 にばね定数k,自然長のばねが置かれ ている。 ばねの一端は中心0に固定され, 他端には質量Mの小球Pがつけられてい る。 Pはみぞの中を滑らかに動け, 0 か つ らPまでの距離rを用いておもりの位置を表す。 いま、円板上で静止 している観測者Aには, Por=ro の点に静止して見えた。 真上から見た図 Level (1), (2)★ (3)~(5)★ Point & Hint W (1) ro をlk, M, ω を用いて表せ。 (2) こうなるために必要な角速度に対する条件を表せ。 次に,Pをみぞに沿って外側に動かし, 点0 からの距離 n の点で静 かにPを放したところ, P はみぞの中で運動を始めた。 (3) Pが位置にあるときAが見る加速度をaとすると, A が書くべ き運動方程式はどのようになるか。 みぞ方向外向きを正とする。 (4) Pの位置を,rの代わりに ro から測ってx=r-ro を用いて表 すと, 運動方程式の右辺の力はLx の形になる。 Lをk, M, ω を 用いて表せ。 (5) Pを放してからばねの長さが最小となるまでの時間, ばねの長さ の最小値,およびAが見るPの最大の速さをk, M, w, ro, n, のう ち必要なものを用いて表せ。 (北海道大) Aにとっては遠心力が現れている。 (2) (1) の答えの形から自然に条件が決まってくる。 (5) (4) の結果からPの運動が確定する。 P the p LECTURE (1) 遠心力と弾性力のつり合いより Mrow²=k(ro-l ... (2)>0より kl Yo= k-Mw² k-Mw² > 0 k w√ M 回転が速過ぎると(ωが大き過ぎると),弾 性力より遠心力がまさり つり合う位置がな くなってしまう。 (3) ばねの伸びは -l と表せるから Ma=Mrw²-k(r-1) (4) 上式に r = ro+x を代入すると ( 38 単振動 •mmmm 自然長 遠心力がかかるから, | ばねは伸びているはず。 ①を用いた 115 遠心力 Mをmと書いてい ないだろうか? 物体上から見たとき 向心 外から見たとき ▷じゃ Ma = M(ro+x)w² − k(ro+x-1) ) =Mxw²2-kx =-(k-Mω²)x ......2 ∴. L=k-Mo² (2)で求めた条件よりLは正の定数であり,②はPがx=0(力のつり合 い位置)を中心として単振動をすることを示している。 (5) ②から単振動の周期Tは M 最大の速さは、 公式 Vmax = Aw より [ro を代入する) より速い Queeeeeeeeeeee- 0 Yo T=2nvk-M²2 2π√ とする誤りが多い。ばね振り子の周期 k が不変となるのは、ばねの力のほかに一定の力 がかかる場合のことである。 遠心力は半径と ともに変わる力である。 ばねの長さが最小となるのは, 内側の端の位置にくるときだから、端か ら端までの時間は半周期。よって, M T= √k-M₁² 振幅Aは上図より, A = n-ro よって, ばねの長さの最小値は ro-A=2ro-n # A 中心 k-Mos² A² = (n-1)√² M

回答募集中 回答数: 0
物理 高校生

1〜5の解き方を教えてください

物理プリント 13 (3) 課題6 図のように、水平な台の上に質量Mの 木片を置き、 距離 ℓ離れた台の端に取り付 けた滑車を通して、 伸び縮みしないひもで 質量mのおもりとつながっている。 重力 加速度の大きさをg とし ひもの質量は 無視でき、 滑車は軽くてなめらかに回転 できるものとします。 A 水平な台が摩擦のないなめらかな面の場合について答えなさい。 初め、木片を手で押さえて固定しました。 (1) ひもがおもりを引く力の大きさはいくらですか。 次の①~⑤から1つ選び、 番号で答えなさい。 ①m ②M ③ ③3③ mg ④ Mg ⑤m Mg 次に、静かに手を離したところ、 木片は台の上を右向きに移動し始めました。 (2) 木片の加速度の大きさはいくらですか。 次の①~⑥から1つ選び、番号で 答えなさい。 D M+m M+m m 6 g -g ① g -g M m M+m (3) ひもが木片を引く力の大きさはいくらですか。 次の①~⑥から1つ選び、 番号 で答えなさい。 21 g ② m Mm M² ① Mg 2 mg ③(M+m)g ・g M+m M+m& M+m (4) 木片が台の端まで距離 ℓ 進むのにかかる時間はいくらですか。 次の ① ~ ⑤ から1つ選び、 番号で答えなさい。 mMg(1+μ) M+m 21 mg g(m + µM) M+m M ③3③ M+mg 2 (6) 3 2Ml 1mg 梢 m M 3 g ⑤ e 2(M + m)l mg B 水平な台が摩擦のあるあらい面の場合について答えなさい。 (5) 木片が移動しているときの、木片の加速度として正しいものを、次の ①~⑧の うちから1つ選びなさい。 ここで動摩擦係数をμとします。 mMg (1-μ) M+m g(m- µM) M+m mMg(1+μ) M-m g(m+µM) M-m おもり 2(M+m)l Mg mMg (1-μ) M-m g(m-µM) M-m g

回答募集中 回答数: 0