学年

教科

質問の種類

物理 高校生

物理のエッセンスからです。 2ページ目に 重力の仕事と重力の位置エネルギーは表裏一体 とありますが、いまいち関係性をよく理解出来ていません。その関係性を教えて頂きたいです。 回答の程よろしくお願いします🙇🏻‍♀️

50 力学 ちょっと一言 位置エネルギーは,基準位置にある物体に外力(手の力)を加えて、 考えている位置まで静かに移動させる際の外力の仕事として決めてもよい 外力のした仕事分だけ位置エネルギーを蓄えたという見方である。 ■大きな物体や複数の物体の重力の位置エネルギーは、重心に全質量が あるとして計算すればよい。 力学的エネルギー保存則 たとえ 体が滑り すべ エネルギ の仕事は から m 摩擦や空気の抵抗がない状態で, 物体を自由に運動させると, 力学的エネ エネルギー12m ルギー保存則が成り立つ。力学的エネルギーとは,運動エネルギー1 また、 ものであ と位置エネルギーUの和のことだ。 ちょ 摩擦抵抗なし力学的エネルギー保存則 mv²+U = − 66 ちょっと一言 「衝突なし」も条件といえる。ただ,弾性衝突だけはよい。 位置エネルギーUは関連するものすべてをそろえる。 たとえば、 ほか 重力の他にばねの力が働いていれば, mgh+=kx2 とする。 2 EX 厳密にいえば,保存力以外の力が仕事をしないとき、力学的エネルギー保 存則が成り立つ。放物運動はその典型例だ。また,次の例では保存力でない 張力や垂直抗力が働いているが,その仕事が0なので, 力学的エネルギー保 存則が成立する。 |解 糸 T 「曲線上を移動するときの 仕事は,微小区間に分けて 考える N I をつ が、 力と移動方向はたえず直角 つまりたえず仕事は 0 糸による円運動 よってトータルの仕事も 0 なめらかな曲面上 ネノ

解決済み 回答数: 2
物理 高校生

高校物理の円運動の単元です。 (3)と(4) ともに軌道から受ける力の大きさを求めるのですが、なぜ(3)では運動方程式を用いたのに、(4)ではつりあいの式で求めるのでしょうか、!?😭

[知識 (1) C we (2)は (3)△ 221. くぼみを通過する小球 図のように, ABの間は鉛直, B→C→Dの間は点 O を中心とする半径の円周の一部, DE の間は水平面に対して角をなす斜面, E →Fの間は点Oを中心とする半径rの円 周の一部, FGの間は水平となっている なめらかな軌道がある。 また, 点BとEは 同じ高さである。 0, に対して高さんの点 (4) P A (5))(6) (6)5 F G 0₁ E B 0 D 02 C Aから,質量mの小球Pを自由落下させたところ,Pは軌道に沿って同じ鉛直面内を運 動した。 重力加速度の大きさをg として,次の各問に答えよ。 (1) Pが点Bを通過する瞬間の速さを求めよ。 (2) 点Cを通過する瞬間の, Pの運動エネルギーと速さをそれぞれ求めよ。 (3) 点Cで,Pが軌道から受ける力の大きさを求めよ。 (4)Pが点Dを通過した直後の速さを求めよ。 また、このとき,点DでPが軌道から受 ける力の大きさと, (3) で求めた点Cで受ける力の大きさの大小を比較せよ。 (5) 点Eを通過した直後に, Pが軌道からはなれないためのんの条件を, 0, h, r を用 いて表せ。 (6) 点Fを通過した直後に, Pが軌道から受ける力の大きさを求めよ。 ●ヒント (北里コ) 鉛 に

解決済み 回答数: 1
物理 高校生

【高校物理、電磁気学】 河合塾出版の参考書、「高校物理」の例題4-5で分からないことがあります。 (c)(d)を解説と異なる方法で求めようとしました。(c)は答えが合いましたが、(d)は合いませんでした。私の解答を書きますので、どこが間違っているかをご指摘頂きたいです。一応... 続きを読む

第1章 電場 275 例題 4-5 電場と電位・位置エネルギー 真空中の電荷と電場に関する下記の y 文において, (a)から (d) にあ てはまる式を記せ。 ただし, クーロン P(-d,d) の法則の比例定数をk [N·m²/C2], •C(0,d) 電子の電荷を -e [C], 電子の質量 をm[kg] とし, 無限遠点での電位を 0Vとする。 0(0, 0) x B(-d, 0) A(d, 0) (1)A(d,0) と点B(-d, 0) に正の電荷 Q を固定し,y軸の点 C(0, d) 電子を置く。 D(0,- -d). 点Cで速度 0 であった電子が電場で力を受けてy軸上を動くとする と、原点0での速さは (a) | [m/s] となる。 (2) 点Aと点B の正の電荷 Q のほかに, 点Cに電気量 Q [C] の点電 荷を固定する。さらに,これら3つの点電荷を固定したままで, y 軸上 の負の方向の無限遠点に置かれた電気量 - Q [C] の点電荷をy軸に 沿って点D (0, -d)までゆっくりと動かす。 このときに外力がする 仕事は(b) [J] である。 (3)点Aと点Bに電荷 Q, 点 C と点Dに電荷 - Q を固定した状態から, 点Cの電荷 Q をC→P→B の経路で点B まで, また点Bの電荷 Q をB→O→Cの経路で点 Cまで同時にゆっくりと動かす。 このとき外 力がする仕事は (c) [J] である。 さらに,点Aの電荷 Q と点B の電荷 Q を固定したままにして, 点Cの電荷Qをy軸の正の方向に向かって無限遠点まで,また点Dの 電荷-Qをy軸の負の方向に向かって無限遠点まで同時にゆっくりと 動かす。 このとき外力がする仕事は(d) [J] である。 (東北大) 解答 (1) (a) 点A,Bの電荷による点Cおよび点0の電位は, それぞれ, Vc= kQ kQ √2kQ + √2d √2d d kQkQ_2kQ Vo d V₁ = kQ+kQ d 求める速さをひとする。 力学的エネルギー保存則より, 1/12m+(e)xVo=(-e) Vc .. mv²= (2-√2) kQe d

解決済み 回答数: 1