学年

教科

質問の種類

物理 高校生

問5の力学的エネルギー保存則の、何が台車から手を離した位置の要素で、何が振動の中心の要素なのかがわかりません🙇🏻‍♀️ (個人的には1/2mv^2+1/2kA^2が振動の中心で −mgAsin30°が手を離した位置の要素だと思いました)

千葉 1 千葉大理系前期 図のように 2023年度 物理 31 角30°のなめらかな斜面上に質量m の台車が置かれ, そ の台車には軽く伸び縮みしない糸の一端が取り付けられている。 その糸のもう一 端は斜面の上端に固定された定滑車と, 床と軽いばねでつながれた動滑車を介 して、天井に取り付けられている。 なお、 台車, 定滑車、動滑車, 糸は,すべて 同一の鉛直面内にあり, 台車から定滑車までの糸は斜面と平行, 定滑車から動滑 車および動滑車から天井までの糸は鉛直で, 糸がたるむことはないものとする。 また、2つの滑車は軽く, なめらかに回るものとする。 価 台車が静止しているときの位置をつり合いの位置とする。図のように,このつ り合いの位置から,斜面の最下点までの距離をLとする。なお,距離L.なら びに台車から定滑車までの距離は、後述する単振動による台車の振幅に対し て,十分に長いものとする。また,ばね定数をk, 重力加速度の大きさを gとす る。空気抵抗や摩擦は無視できるものとして、 以下の問いに答えなさい。 ただ し、解答に用いる物理量を表す記号は,問題文中に与えられているもののみとす る。 に その e fi St と 重力の向き 台車 L 30° m 図 ■天井 Grellle 動滑車 ばねん 床 〇問1 つり合いの位置において台車が静止しているときの, 糸が天井を引く力の 大きさを求めなさい。

解決済み 回答数: 1
物理 高校生

解答の図についての説明です。なぜ一部分だけしか合成波を書かないんですか??1/4tでいうと、目盛りの3.7はどうしてスルーされているんですか 追記です!なんか考えてたらどの図もなんでそうなるのかわからなくなってきました

波AとBがx軸上を反 間に1目盛りずつ進んでいる。 このと き, 次の(1),(2)の時刻での合成波の波 形をかけ。 3秒後のA 3秒後のB 1) 2秒後 2) 3秒後 2秒後のB (2) y B の波を (1) では2目盛り、(2)では3目盛り分進めて、 重ねあわ この原理にしたがって合成波を作図する。 O [101] 01 定在波 教 p.119 直線上を右へ進む波A と, 左へ進む (1) A+- B . Bがある。 A, B ともに振幅, 波長 0. 2. 3 5 4 6 8.'9 よび振動数の等しい正弦波で, T 2 3 4 5 6 7 8 9 =0で2つの波の先端が出会った状態になっている。 -T, T, 周期をTとするとき,12T, 21, 21, TにおけるA, B の波を, Aは一点鎖線, B は破線で図示し, A, B の合成波を 実線で図示せよ。 2) 時間が経過すると合成波は定在波になる。 1~9の間の節の位 置,腹の位置を番号ですべて示せ。 1)1~5の4目盛りが1波長なので波は 11 ごとに1目盛りずつ, 波Aは右, 波Bは左へ移動する。 2) (1) でかいた4つの図から,媒質の変位が常に0となる位置(節) と変位が最大となる位置(腹)をさがす。 節も腹も 1/12 波長おき に現れ、隣りあう節と腹は1波長間隔である。 24 34 T 2 3 4 5 6-7 8 9 T 2 3 7 45.6 8 9 T 3 15 6 78 (2) 節:2,4,68 腹: 1, 3, 5, 79 2 定在波の要素 教 p.119 102 点 A, B から振幅, 波長, 振動数の等しい2つの波が出ている。 A, を結ぶ直線上で合成波を測定したところ, 3.0cm おきに最大振幅 ■cm, 振動数 1.5Hz の波が見られた。 A, B から出ている波の振幅。 長, 振動数を求めよ。 振幅: 2.5cm 波長: 6.0cm 振動数: 1.5Hz

解決済み 回答数: 1
物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0