学年

教科

質問の種類

物理 高校生

画像の問題の問7の答えが③になる理由が分かりません。 解説をお願いしたいです。

第1問 図1のように、なめらかで水平な床の上に, なめらか な表面をもつ質量 M の台が水平に置かれている。 台の右側は, 点を通る紙面に垂直な軸を中心とした半径の半円筒状に, 直方体がくりぬかれた形をしている。 図1は床に鉛直な断面を 示しており、 面 AB は水平で, 曲面BCになめらかにつながっ ている。 点0を原点とし、 水平右向きにx軸, 鉛直上向きに y軸をもつxy座標をとる。 重力加速度の大きさはg とする。 床は十分広く、空気の影響は無視できるものとする。 運動はす べて図1の紙面内 (同一鉛直面内) で起きているものとし、 以 下の問いに答えよ。 [1] 台を床に固定し,質量mの小物体を面 AB上のある点から 速さで水平右向きにすべらせた。 小物体は半円筒に沿って 運動し、BC間の途中の点Dで台から離れ, 最高点 Qに達 したのち落下した。 x軸とODのなす角をα 点Dにおける 小物体の速さを 点Dから点Qまでに要する時間を する。 小物体の大きさは無視できるとする。 Vo B 床 図1 問1 小物体がBD間の∠BOP = 0 となる点Pにあるとき, 小物体の速さを 0, 1, g を用いて表せ。 問2点Pで小物体が受ける垂直抗力の大きさNを,m,vo, 0, l,g を用いて表せ。 問3 速さを, α, L, g を用いて表せ。 D 台 問4時間 t を,,αg を用いて表せ。 問5点Qの座標 (X, Y) が次の等式で表されるとき, gのうちから必要なものを使って書き表せ。 ① (5) の空欄に入る式または文字を,,,, X= ① × ② - ③ × ④ xt YQ = ① × ④ + ③ × ② xt- ⑤ x t² [2] 台の固定を外し、 静止した台の面 AB 上のある点から, 質量mの小物体を速さで水平右向きにすべらせた。 小物体は 半円筒に沿って運動してある高さまで上がったのち, 台から離れることなく折り返し, 半円筒に沿って降りて面ABに引 き返した。 小物体の大きさは無視できるとする。 問6 小物体が最大の高さに達したときの小物体の床に対する速さを 02, m,Mを用いて表せ。 問7面ABに引き返した小物体が,床に対して左向きに進むのは,mとMの間にどのような関係があるときか。 次の①~ ⑧のうちから最も適切なものを1つ選んで番号で答えよ。 (1 1 -M m<- (7) m<2M ② m> -M ③m <M 4 m > M ⑤ m<√M ⑥m> √2M ⑧ m>2M

回答募集中 回答数: 0
物理 高校生

(3)の青ペンのところがわかりません。 どうして変位を-4mとして解くのですか

問題 03 相対速度・ 相対加速度 第1章力学 物理基礎 公式 相対加速度 wwwww (Aに対するBの相対加速度)(Bの加速度) (Aの加速度) \ www Aが基準 www 基準を引く 図2のv-tグラフの傾きから, Aの加速度は1.0[m/s], Bの加速度 はαB=2.0〔m/s2] と読み取れるので, 求める相対加速度4AB 〔m/s2] は. aAB = AB-AA= -2.0-1.0=-3.0[m/s2] (3)(1),(2),Aに対するBの相対速度, 相対加速度を求めた。 これより, 時 刻 t = 0 におけるAに対するBの運動のようすを図示すると、下図のように なる。 図1のように,一直線上で運動して いる物体AとBがある。 時刻t=0に おいて,物体AとBは4.0m離れてい て, v-tグラフ (図2) のような等加速 度直線運動をしていた。 ある時間後, 物体AとBは衝突した。 ただし,速度 と加速度は右向きを正にとるものとす る。 有効数字2桁で答えよ。 速度 物体A 0- -4.0m- 図1 2 速 1 物体A 0 V [m/s] 物体B (1)時刻 t = 0 において, 物体Aに対 するBの相対速度はいくらか。 物体B 0 (2) 物体AがBに衝突するまでの物 体Aに対するBの相対加速度はいくらか。 (3) 物体AとBが衝突するまでの時間はいくらか。 0 1 2 経過時間[s] <t=0のとき> 図2 v-tグラフ A (静止) f[s]と同じである。s=uot + 1/2atより、 13.0m/s2 B 1.0m/s - x(m) (4) 物体AとBが衝突する直前の相対速度の大きさはいくらか。 -4.0 0 <弘前大 > はじめのBの位置をx=0[m] とし, 右向きを正とすると, はじめのAの 位置はx=4.0 〔m〕 になる。 (3)で求める時間は, 初速度をv1.0 [m/s], 加速度をa=3.0[m/s2] として, 変位s=4.0[m] となるまでの時間 d₁o 1 -4.0 = 1.0.++ ( (-3.0) t2 2 相対速度 (3t+4) (t-2)=0 これより=-1/3.2 t= 運動している観測者から見た物体の運動を相対運動という。 (解説) (I)「Aに対するBの相対速度」とは, 「Aから見たBの速度」 すなわち「Aと一緒に運動する観測者から見たBの速度」のことである。 公式 (Aに対するBの相対速度)= (Bの速度)(Aの速度) ww Aが基準 wwwwwww 基準を引く 図2のv-tグラフより 時刻t=0において, Aの速度はv=0[m/s], B の速度はv=1.0 [m/s] である。 よって, 求める相対速度 VAB [m/s] は, VAB=UB-VA=1.0-0=1.0[m/s] (2)速度と同じく, 加速度も相対加速度を考えることができる。 この式 (tについての2次方程式) を解くと, t>0なので,t=2= 2.0[s] を選べばよい。 (4) 衝突する直前の相対速度vAB 〔m/s] は,v=vo + atより よって, VAB'=-5.0[m/s] 求める相対速度の 「大きさ」 は, 5.0m/sである。 UAB′ = 1.0+(-3.0) 2.0 (1) 1.0m/s (2)- -3.0m/s2 (3)2.0s (4)5.0m/s 1. 速度 加速度 11

回答募集中 回答数: 0
物理 高校生

(2)なんですが、どうしてV0が0になるのか教えて欲しいです。

れでよくでる 図1のように、 東日本地域で記録タイマーを用いて重力加速度の大きさを測 定する実験を行った。記録タイマーをスタンドに固定しておき、記録タイマー に記録テープをセットした。 記録テープの一端にはおもりが取り付けてある。 記録タイマーは,打点が1秒あたり50回記録されるようになっている。 手で 記録テープを持って鉛直に垂らした後、記録タイマーのスイッチを入れてか ら、記録テープから手を放し落下させた。おもりが落下し始めた時刻を0とし おもりの持つ初速をDとする。 記録テープには図2のように打点が記録され 記録テープを5打点ごとに切り取り、記録テープの短い順に, A, B, C, D, E, F. ・・・・とする。 落下させた直後では記録テープAの打点が重なるので、隣り 合う打点がはっきりと区別できる打点(記録テープBの左端) をはじめの打点 として, 方眼紙に記録テープの短い順(Aは除く) に隙間が空かないように貼 り付けて図3のようなグラフを作成した。 図3の縦軸は5cm間隔で目盛が振っ てあり、横軸は時間を示し、 図2の記録テープBの左端の打点の時刻をもと して,原点と一致させてある。 また, 図3の描かれている直線は各記録テー プの端の中点をつなぐように引いた直線である。 記録 タイマー 記録 テーブ 正 図1 A B C D 5cm 40.0~ 30.0- 24.9 図2 20.0- 10.00- D .. E 805a 2013 E 時間 〔S〕

解決済み 回答数: 1
物理 高校生

(2)の(オ)が何度解説読んでもわかりません、下線部引いた速度の話がよくわかりません お願いします

慶應義塾大-理工 (エ) 2022年度 物理 <解答> 43 斜面上では,質点には常に斜面下向きに mgsin30°の力がはたらく。 つまり、斜面下向きに見かけの重力加速度g' =gsin 30℃ がはたらいている L T=2π = 2π g' L gsin 30° とみなせる。よって、 求める周期をTとすれば,単振り子の公式から =2π (2)(オ) 90°のときの床面に対する三角柱の速度をVとすると, x軸方向 の運動量保存則から 2 gンデンサーの観 m(-vocos 30°) = (m+M) V :.V= √√3mvo 2(m+M) 08200nie ge="part また0=0°のときの三角柱から見た質点の速度の大きさを とすると, 質点の床面に対する速度の大きさは√2+V2であるので,力学的エネル ギー保存則および①から mvo +mgLsin.30°=12m(+V)+/12MBの 2 mvo+ mgL (m + M) V2 2 (m+){ m 1 1 2 1 2mvi 2 v22=vo2+gL- (m+M) √3mvo 2 (m + 10} 3mv.2 =vo²+gL- 4(m+M) =gL+ v₂ = √9L+ に m+4M 4(m+M) m+4M 4(m+M) 2 サーの電気容量は、間隔がのコン -(+)(S)- の誘電体を挟んだコンデンサーの 2 (0) (0) (0) Vo 0+0+0 Lsin 30° ・・ L m M 30° M x 30° (カ) 摩擦力は三角柱と質点の間の内力なので,x 軸方向の運動量は保存さ れる。よって、①と同じ速度になる。 . V=17 √3mvo 2(m+M) (3) 求める三角柱の加速度の大きさをα とする。 三角柱から見るとx

解決済み 回答数: 1
物理 高校生

問5相対速度の問題で、解答にある相対速度が表されてる図が何故そうなるのか教えて頂きたいです。 相対速度を考えるときの図の書き方も教えて頂きたいです。 回答よろしくお願いします🙇🏻‍♀️

物理 次に,AさんとBさんは、発射台が水平面に固定されていない場合の現象につ いて考察している。ただし、図3のとは正しくは描かれていない。 Aさん: 発射台が水平面上をなめらかに運動できるとき, 図3のように発射台から 見て水平方向から45°の方向に小球を打ち出すと, 小球が水平面に衝突す る直前の速度方向と水平面のなす角度が 45° とは異なるよ。 Bさん:小球を打ち出したときの反動で,発射台が動いてしまうのが原因だね。小 球が水平面に衝突する直前の速さをひとして考えてみよう。 打ち出した直後 落下する直前 小球 <45° 発射台 小球 水平面 水平面 問5 次の文章中の空欄 10 ものを,それぞれ直後の { 11 物理 に入れる式または語句として最も適当な } で囲んだ選択肢のうちから一つずつ選べ。 Aさん:Φ=60°になるとき,小球を打ち出した直後の,発射台に対する小球 の速さ”はどうなるだろう。 Bさん:発射台に対する小球の相対運動を考えると求められるよ。小球を打ち 出した後の台の速さをVとすると, v= 10 0 √2(V) ② √2V+ 2(+12/20) ③√√2 (V-v') ④ √2 (V+α) となるよ。 Aさん:一方で,発射台の質量が小球の質量より十分大きいときは ① 0°に近い値 11' 図 3 問4 小球を打ち出した後の発射台の速さはいくらか。 最も適当なものを,次の① ⑥のうちから一つ選べ。 ただし, 発射台の質量をM, 小球の質量をとす る。 9 mv'sin 45° mv'cos 45° mu'sino M M M mv'cos o M 2mv'sin 2mv'coso M M 11 ② 45°に近い値になるよね。 ③ 90°に近い値

回答募集中 回答数: 0
物理 高校生

エについてです 答えはあっていましたが、イマイチすっきりしないです。 どうしてこのように言えるのか詳しく教えて欲しいです 出来れば、図解があるとありがたいです🙇‍♀️

物理 問3 次の文章中の空欄 ウ . I それぞれの直後の{ }内の数値のい ずれかが入る。入れる数値を表す記号の組合せとして最も適当なものを,後の ① ~⑨のうちから一つ選べ。 3 国際宇宙ステーションは半径が 6.4 × 10℃ km の地球の上空およそ400kmの 高さで地球の周りをほぼ等速で回っている。 重力は万有引力のみで表せて地球 の自転の影響が無視できるとすると, 国際宇宙ステーションの軌道上の地表に 対する加速度は地球の中心向きであり,その大きさは地表での重力加速度の大 (a) 0.001 E きさのおよそ ウ (b) 0.06 倍である。 (c) 0.9 地球に固定された座標系が慣性系とすると,国際宇宙ステーションの中で無 重量状態にある物体が受ける慣性力の大きさは,この物体が地表で受ける重力 (d) 0.001 のおよそ I (e) 0.06 倍で地球の中心から遠ざかる向きである。 (f) 0.9 ウ H ① (a) (a) ②a ② ③ (a) ④6 ⑤ ⑥ ⑦ ⑥ (b) (b) (b) (c) (c) (d) (e) (f) (d) _(e) (f) (d) (e) (f) 08.0 02.0 GMm 400km 6.4.10→68m² 68 64 16 5/6 17 (1) = 17 119 17 256 289 0.9 289/286 289

解決済み 回答数: 1
物理 高校生

問5の問題がわかりません。 解説のマーカーで線を引いた部分について、なぜ、1/4Tとなったのですか?

体1. 方向 問4 積 12 ③ Point 運動量の変化と力積の関係 物体の運動量の変化は、 積と等しい。 mv2mvy=FAt その間に物体が受けたか m質量 : 変化前の速度, V2 変化後の速度 Fat: 受けた力積 Point! 衝突での作用・反作用の法則 作用・反作用の法則より直線上の小球入 の衝突で小球 A. Bが及ぼし合う力は大きさが等 しく向きが逆である。 そのため, 衝突で小球が小 球Bから受けた力積をIとすると, 小球Bが小球A から受けた力積はと表される。 小球Aと小球Bが衝突したとき, 小球Bが小球 から受けた力積は, 運動量の変化と力積の関係から、 4mv-04mo (右向きに大きさ4mv) である。 作用・ 反作用の法則より 小球 A が小球Bから受けた力 は、4m (左向きに大きさ4mv)である。 問5 単振動の振幅,周期 13 8 Point! 単振動の振幅 小球Bの振動の中心はばねが自然の長さのときの 小球Bの位置(力のつり合いの位置, 小球 A と衝突 した位置)で,単振動の一方の端は小球Bが最もばね を押し縮めた (壁面に最も近づいた)ときの位置であ る。 そして、振動の中心から端までの距離が振幅で ある。 求める距離は,力学的エネルギー保存の法則を用 いると求めることができる。 1/2 =1/2x2 法則を用いると, 1.4mv²= よって, X=20√ 第3問 A 問1 動の周期をT とすると, T=2 衝突直後から小球Bは単振動を始める。この単振 二つの のスリッ 明暗の縞 4m m =4π k 問2 千 小球Bはばねが自然の長さ (振動の中心) の位置か ら単振動を始める。 単振動を始めてからはじめて小球 かばねを最も押し縮めたときまでの時間は 1/17 表されるので, 求める時間は, 1/27=1/2x47 m m =π √ k +α! 単振動の周期 小球Bの単振動の周期を導いてみよう。 ばねが自 然の長さからxだけ縮んでいるとき,水平右向きを 正とすると、小球Bにはたらく力はxと表され る。この力は復元力であり、小球Bの加速度をαと すると、運動方程式は4ma=kxとなるので. a=-- k x と表される。 4m また、単振動の角振動数を とすると a=-x と表されるので、上式と比較して k 小球Bの単振動の周期をTとすると 4m √ k 222 = 4π T= @ +α! 単振動の振幅 m k 単振動の角振動数を とすると, 小球Bが振動の 中心を通過するときの速さと振幅の関係は. k Point 経経反合 ※反 レー S1, S スリ リッ リッ この 光 Point! ばねによる単振動の周期 ばねにつながれた物体の単振動の周期は T=2π m √ k T: 周期, m: 質量 k : ばね定数 衝突直後から小球Bがはじめて壁面に最も近づい たときまでに移動した距離は,小球Bがばねを最も 押し縮めたときのばねの自然の長さからの縮みと考え ればよい。その距離をXとして、衝突直後に小球B が水平右向きに速さ”で動き始めたときとばねを も押し縮めたときについて力学的エネルギー保存の v = Aw= A√ Am (上の+α!のの式を代入) m よって, A=20 √ k (第二

回答募集中 回答数: 0
物理 高校生

物理 132番の(ケ)について質問です (ケ)のときコイルの誘導起電力はi1の向きと同じなので符号は正と考えたのですが回答では負でした。なぜ負になるのかを教えてください🙏

抵抗 R O スイッチS に比べて増加するか、するがす (i) コイル2の長さを軸方向に押し縮めた後に、 同じ実験をした。 (i) 鉄心を引き抜いた後に、同じ実験をした。 132. 〈コイルを含む直流回路> 〔19 大阪府大 改 からの距離 (m) うう。 導体棒中 ■における電場 反時計回りに, 電力が生じる。 印b の向 ■に電流が流れ 図1の矢印 はたらくと考え である。 [15 同志社大 〕 次の文章のアコに当てはまる数式または数値を 答えよ。 また、サに当てはまる語句を答えよ。 h c L b Ix d f R 図に示すように抵抗とコイルをつないだ回路で, スイッ チSを閉じたり開いたりしたときに回路に流れる電流を考 えよう。 電池の起電力をE. コイルの自己インダクタンス L. 2つの抵抗の抵抗値は図のようにr, Rとする。 電池 と直列につながれた抵抗値の抵抗は電池の内部抵抗と考 えてもよい。 また, 導線およびコイルの電気抵抗は無視できるものとする。 a +r ch S E スイッチSを閉じた後のある時刻にコイル, 抵抗値Rの抵抗を図の矢印の向きに流れる電 流をそれぞれ I, と書くことにする。 このとき, 抵抗値の抵抗を流れる電流はア となる。 経路 abdfgha についてキルヒホッフの法則を適用すれば、 電池の起電力と回路に 流れる電流の間にはE=イの関係が成りたつ。 一方,このときコイルを流れる電流が 微小時間 4t の間に 4 だけ変化したとすると, 経路 abcegha についてキルヒホッフの法則 を適用すればE= ウ の関係が得られる。 スイッチSが開いていて回路に電流が流れていない状態でスイッチSを閉じたとき、その 直後に回路に流れる電流は, L=エ=オとなる。したがって、スイッチSを閉 じた直後にコイルに生じる誘導起電力の大きさはE, r, R を用いてカと表される。 方, スイッチを閉じてから十分に時間が経過した後にコイルに流れる電流は、ムキ であり,このときコイルにはクだけのエネルギーが蓄えられることになる。 to D

解決済み 回答数: 1