学年

教科

質問の種類

物理 高校生

高校物理です。 類題の解き方を誰か教えてください。

10 例題② 導体棒の運動 (発電機の原理) 鉛直上向きで磁束密度B[T] の一様 磁界中に, 間隔 [m] で水平に置か れた直線状の平行な2本の導線と、 抵抗値 R[Ω]の抵抗をつなぎ,軽い導 体棒ab を置く。 導体棒には軽くて伸 a B M 支える。静かに手をはなすと, おもりは下降し始め、しばらくして おもりと びない糸を張り, 滑車を通して他端に質量M[kg]のおもりをつり下げ、手で 導体棒は一定の速さになった。 重力加速度の大きさをg[m/s] として、次の問 問いに答えよ。 ただし, 導体棒の質量や抵抗, 導体棒と導線との間の摩擦力,回 路を流れる電流がつくる磁界は無視できるものとする。 (1)回路を流れる電流の強さ I[A]を B, l,M,g を用いて表せ。 一定の速さ” [m/s] を B, l, R, M, g を用いて表せ。 (3)重方の仕事率 P〔W〕を B, l, R, M, g を用いて表せ。 指針 (1) 等速度運動をしているおもりと導体棒にはたらく力はつり合っている。 (2)に生じる起電力を”を用いて表し, キルヒホッフの法則を用いる。 #4 (1) 導体棒には,糸の張力 T[N] と電流が磁界から受ける力 IBI [N], おも りには糸の張力T [N] と重力 Mg 〔N〕 がはたらいている。おもりと導体棒は等速度 運動をしているので,それぞれにはたらく力はつり合っている。よって, T-Mg=0 ・① T-IBl=0 ......2 式①,②より,IBl=Mg よって, I= ・[A] Mg Bl (2)導体棒 ab には,a から bに向かう向きの誘導起電力 V=uBl[V] が発生する。 キルヒホッフの第2法則より、 p.302式(3) p.261式 (12) vBl=RI よって,v= RI RMg [m/s] Bl B²12 (3)力の仕事率 P〔W〕 は, 力と速さの積で表される。 すなわち, M'g'R P=MgXv= (W) B²12 類題2 図のように、例題② の装置に, 内 部抵抗の無視できる起電力E [V] の電池とス イッチSを付け加えて, おもりを手で支えて おく。 スイッチSを閉じて静かに手をはなす と、おもりは上昇し始め、 しばらくするとお もりと導体棒は一定の速さになった。 R ET (1)回路を流れる電流の強さ [A] を B, l,M,g を用いて表せ。 (2)一定の速さ [m/s] を B, l, E, R, M, g を用いて表せ。 B a M

回答募集中 回答数: 0
物理 高校生

物理基礎の問題です! (3)を分かりやすく教えて欲しいです!! よろしくお願いします🙇🏻‍♀️՞

思考実験 270.油の比熱の測定 油の比熱を求めるため,次の実験を行った。 水(または油)を入れた容器に電熱線を浸し、電池, 可変抵抗,スイッチからなる直列 回路をつくった。回路には電流計, 電圧計がとりつけられ, 電熱線に流れる電流,加わ っている電圧を測定できる。また,可変抵抗の抵抗値を変化させて,電流,電圧を調整 できる。 容器には温度計がとりつけられており,内部の水 (または油)の温度を測定でき る。 容器は断熱材でおおわれており、 電熱線で発生した熱は容器の外には逃げないもの とする。また,水の比熱を4.2J/ (g・K) とする。 実験結果は、表のようになった。 液体の | 種類 質量 電流計の電圧計の 通電時間 液体および容器の温度[℃] [g] 水 |水 200 読み [A] 読み[V][分] 実験前 実験後 1.01 12.0 13.0 10. 20.5 油 3.0 4.0 65 8.5 18.5 (1) 下線部について, どのような回路を組 めばよいか。 右に示 した記号を用いて, 回路の概略を図示せよ。 容器(電熱線, 器具 電池 可変抵抗 電流計 電圧計 スイッチ 温度計を含む) 記号 A (V 医 (3) 水あるいは油を用いた実験で,電熱線で発生した熱量はそれぞれいくらか。公式 容器の熱容量, 油の比熱はそれぞれいくらか。 20. 県立広島大改)

回答募集中 回答数: 0
物理 高校生

この質問に答えて!

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

未解決 回答数: 0