学年

教科

質問の種類

物理 高校生

オが分かりません。普通にqwじゃないんでしょうか? 答え イ qvb オvb

II 空所を埋め、 問いに答えよ。 ウ (配点 45 ) 図1のような直方体のp型半導体があり, x,y,z 方向の辺の長さをそれぞれl, whとする。 図1に示すようにp型半導体の右側面をR 面, 左側面をL面とする。 このp型半導体のx軸に 垂直な面に電源を接続し, x軸の正の向きに大きさIの電流を流す。 z 軸の正の向きに磁束密度 の大きさBの一様な磁場(磁界) をかけたときの半導体内での電気伝導について考える。p型半 導体は,構成する原子間で結合する電子が不足してできた正孔 (ホール) と呼ばれる正電荷とみ なせる荷電粒子 (電気量q)が電流の担い手 (キャリア) となり, 電流が流れると考えることが できる。このp型半導体の単位体積あたりの正孔の個数をnとする。 h L面 と エは選択肢{ }の中から適切なものを選べ。 w B 図 1 R面 電源 まず, 磁場がかかっていない状態 (B=0T) では, p型半導体内で正孔は電源による電場 (電界)を受け, 平均の速さで動き, 電流が流れる。 この電流I の大きさは ア である。 この状態で磁場をかけた。 磁場がかかった状態でも正孔は平均の速さで動くとすると,正孔は, 磁場によって大きさ イ のローレンツ力をウ {L, R}面に向かう向きに受ける。 その ため ウ面はエ{正, 負}に帯電した状態になり, L-R面間に電場が生じる。 L-R面間 の電場の大きさは,正孔にはたらくローレンツ力と電場による力がつり合った状態で決まり、こ れら2つの力がつり合うと, その後, 正孔は直進すると考えられる。 このつり合いの関係から L-R面間に生じる電場の大きさは オ と求まり, L-R面間に生じる電位差 VH は カ と表すことができる。 VH は I を用いると キ と表される。この関係を用いると, 半導体中におけるnを調べることができる。

回答募集中 回答数: 0
物理 高校生

この問題の(き、く)の部分の解決で、何故x軸方向にE/Bで移動する観測者と分かるのですか? どなたか教えて頂けると助かります

VI. 次の文を読み、下記の設問1・2に答えよ。 解答は解答用紙の所定欄にしるせ 14 2022 年度 物理 電場や磁場の影響を受け, y 図1のように,y 軸方向正の向きに強さE の一様な電場がかかっているとする。 電気量 g (g > 0)の荷電粒子が時刻t = 0 に原点 0 から初速度 0(0) で運動を開始した。 時刻でのこの粒子の位置は (x,y)=(あ, である。 である。 ・図2のように、xy平面に垂直に、紙面の裏から表に向かって, 磁束密度B の一様な 場がかかっているとする。 質量 m, 電気量 g (g > 0) の荷電粒子が時刻 t = 0 に隠さ 0から初速度v = (u,0)(v>0) で運動を開始した。 この粒子が運動開始後に 初に y 軸を通過するときの時刻はt= E V y 平面上を運動する荷電粒子を考える。 0 STUSKO 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy平面に垂直に紙面の から表に向かって、 磁束密度B の一様な磁場の両方がかかっているとする。 質量m, t 気量g(g> 0)の荷電粒子が時刻t = 0 に原点Oから初速度 (0,0)で運動 開始した。この粒子の x 軸方向,y 軸方向の速度をそれぞれ ux, vy, 加速度をそれぞ = Q1 Q とすると,運動方程式は 図1 X (x,y)=(0, B [O うで,そのときの座標は え) V い y 図2 B 立教大 0 図3 とな で運 で道 道を Vo 1. 2.

回答募集中 回答数: 0
物理 高校生

明治大学の過去問です。 1枚目の11と12がわかりません。3枚目は12の選択肢です。どなたか教えていただきたいです 11は-2Q/3、12はEが正解です

Ⓒ2√5 8 の解答群 √√2 2 L V6 Ⓡ L 2 〔II〕 次の文中の C [® F に与えた電気量は 描いた図は 12 √3 2 √7. 2 © L ©L G√2L 9 から 16 から一つ選び,解答用紙の所定の欄にその記号をマークせよ。 ⒸVEL に最も適するものをそれぞれの解答群 真空中に,点Oを中心とする半径R 〔m〕 の不導体球Iがある。この球の内部 は一様に正に帯電しており, 全体で電気量Q〔C〕をもつ。 クーロンの法則の比 例定数をk [N・m²/C2] とする。 (1----) 38 @ (^-^) MO 0 1. 図1のように、点Oを中心とする不導体球Ⅰより大きな半径r 〔m〕 の球面 Sを考える。電場(電界)の強さがE[N/C〕 のとき,電場に垂直な面を単位 面積あたりE本の電気力線が貫くと定めると, 球面Sを貫く電気力線の本 数Nは, S内に含まれる電気量を用いて N = 9 である。 球面S上の inpony 電場は面に垂直であるので, S上の電場の強さは は 〔N/C〕となる。 このように,帯電体の外側の電場は,帯電体を囲む曲面の内部にある電気量 4 AV で定まり、点Oに同じ電気量をもつ点電荷があるとみなすことができる。 この不導体球Iを,図2のように点Oを中心とする中空の導体球殻ⅡIで囲 10 んだ。導体球殻 ⅡIに電荷を与えて帯電させると、導体球殻ⅡIの外側の電場 Q は、点Oに電気量 200 の点電荷があるときの電場と等しくなった。導体球殻IⅡI 3 11 である。また,不導体球Iの外側の電気力線を である。 Bように、下痢止 た点での単板 と点0での電 ただし、電力の基準は無

回答募集中 回答数: 0
物理 高校生

熱力学の問題です 解説お願い致します

(B) 図2のように, 断熱材でできた円筒容器を鉛直に設置し, その内部で鉛直方向 になめらかに移動できる断面積Sのピストンを入れる。 ピストンの下の空間 (空間A)には単原子分子理想気体Aが密封されており, ピストンの上の空間 (空間B) には単原子分子理想気体Bが密封されている。 空間Aと空間Bの高さ の合計は2Lである。 空間B内の気体分子数は空間A内の気体分子数の2倍とす る。 ピストンは気体の出入りを許さないが, 熱の出入りは自由にできる。 はじめ, ピストンは底面から高さ 13 Lの位置で静止していた。このときの気体Bの圧力 をPとし,この静止した状態を状態 I とする。 状態 Ⅰ から空間A内の気体Aを ゆっくりとヒーターで加熱したところ, ピストンは徐々に上昇し, しばらくして 加熱を止めたところ, ピストンが底面からある高さで静止した。 この状態を状態 ⅡI とする。 状態ⅡIの気体Bの圧力は2P。 である。 ピストン, 容器, ヒーターの熱 容量およびピストン, ヒーターの体積は無視できる。 重力加速度の大きさはと する。 空間B 空間 A 理想気体B 理想気体A 図2 ピストン (二) ピストンの質量を S, Pog を用いて表せ。 (ホ) 状態 Ⅰ から状態ⅡIまでにヒーターが気体Aに加えた熱量を S, Po,Lを用い て表せ。

回答募集中 回答数: 0