学年

教科

質問の種類

物理 高校生

(2)で、過程IIの内部エネルギーの変化を答える問題で、自分の回答と教科書の解答が合いません。教科書には解説が載っていないのでどこが間違っているかわかりません。どなたか間違っているところを教えてください。

4 気体の状態変化 熱効率 (p.124~136) 円筒容器にピストンで単原子分子理想気体を封じ, 容器内外の圧力を1.0×10 Pa, 気体の温度を3.0×102K, 体積を 2.0 × 103m²とした。 このときの気体の状態をA として,次の手順で気体の状態を変化させた。 過程 I ピストンを固定したまま気体に熱量を与えたところ,気体の圧力は 01×0.1 2.2×105 Paになった状態 過程Ⅱ 次に,容器を断熱材で囲み、熱の出入りがないようにしてピストンをゆっ くりと操作したところ,気体の圧力は1.0×105 Paにもどり,体積は 3.2×10-3m²になった(状態C)。 C 過程Ⅲ 断熱材を外し、状態Cで気体を放置したところ,気体はゆっくりと収 縮し,状態Aにもどった。 (1)過程Ⅰ→Ⅱ→Ⅲの変化を、横軸に体積V,縦軸に圧力をとったグラフに示せ。 なお,グラフには変化の向きを示す矢印を入れ,状態A~Cでの横軸と縦軸 の値を明記せよ。 代 (2)各過程での気体の内部エネルギーの変化 4U [J] 40[J], 40 m [J] を求めよ。 (3)各過程で気体がされた仕事 W [J], Wn[J], Wm[J] を求めよ。 (4)各過程で気体が外部から吸収した熱量Q [J], Qm [J], Qm [J] を求めよ。 (5)この1サイクルにおける熱効率を有効数字2桁で求めよ。

解決済み 回答数: 1
物理 高校生

モーメントのつりあいでTsin60×lsin60がだめな理由を教えて欲しいです

水平方 Tcos 45°Fcos 45°= 0 よって T=F 鉛直方向の力のつりあいより Tsin 45° + Fsin 45°-W = 0 T+F=√2w T=F=√2 sino T 45° G 0 A Tcos 45 B Fcoso 図 C W ① ②式より ・W 2 2 -x60=30√2 =42N2 [別解点Bのまわりの 力のモーメントのつりあいより Wx0.30-Tsin45" x 0.60-0 よってTw -W42N Rx-Tcos60°=0 Rx-1T=0 ここがポイント 96 . の向きを仮定し、水平 鉛直2方向のつりあいの式と力のモーメントのつりあいの式を立てる。 解答 抗力の向きを図のように仮定する。 C 水平方向の力のつりあいより10 30° ① MO 鉛直方向の力のつりあいより Ry+ Tsin 60°-W = 0 A Ry R Rx -Zsin 30° -Ry+ -T-W=0 T T'sin 60° 2 60° Ma の向きが正確に分から なくても、ある向きに仮定す ることにより解くことができ る。 その場合, Rx, Ryが負 の値であれば、仮定した向き と逆向きであると考えればよ い。 2 参考 抗力の大き と向き 京 点Aのまわりの力のモーメントのつりあ。 OS 12 30° -sin 60° B より Tcos 60° Ry [mm] m02.0 m08.0 W (080) OL T×lsin30° W x 12sin60°= 0 3 +--0 x/1/23 (x) 0 Rx (1) ③式より T=- √3 W mos.0 m01.0 (2)Tの値を①式に代入してR-12T=4W(右向き) Tの値を②式に代入して Ry=W- √3 = -W 上向き 2 R2=Rx²+R,2 = (4) + (12/0 4 w2 よってR=/12/2W Ry 1 (Stan0= Rx√3 ここがポイ 97 棒にはたらく から受ける垂直 m00 LO molよって0=30° (87) MO-08+0=3 ありをつるした糸の張力 W (おもりにはたらく重力は等し ける垂直抗力 NA と床から受ける摩擦であ あいの式を連立させて解く。

解決済み 回答数: 1
物理 高校生

(2)(3)についてです。なんで力学的エネルギーの法則を使うと分かるんでしょうか。

54 54 第1編 運動とエネルギー 例題 25 力学的エネルギーの保存 ➡64,65 解説動画 ともになめらかな, 斜面 AB と水平面 BC がつながっており,点Cにばね 定数 50N/m の長いばねがつけてある。 2.5m 水平面 BC から 2.5mの高さの点Aに質量 2.0kgの物体を置き, 静かにす べり落とした。 ただし, 重力加速度の大きさを 9.8m/s2 とし, 水平面 BC を 高さの基準にとる。 B (1) 点Aでの物体の力学的エネルギーは何Jか。 (2) 水平面 BC に達したときの物体の速さは何m/sか。 (3) 物体がばねに当たり, ばねを押し縮めていくとき, ばねの最大の縮みxは何mか。 指針 (2),(3) 重力や弾性力 (ともに保存力)による運動では、力学的エネルギー (運動エネルギーKと位置エネルギー の和)は一定に保たれる。 すなわち K+U=一定 解答 (1) KA+UA=0+2.0×9.8×2.5=49J 2) 力学的エネルギー保存則により KB+UB=KA+UA よって 1/2×2.0×2+0=49 v²=49 ゆえにv=7.0m/s (3)(2)と同様に, K+U=KA+UA ばねが最も縮んだとき, 物体の速さは 0 であるから K = 0 なんでこの式 つかうか POINT ①運動エネルギー ②重力による位置エネルギー = 1/2m2 U=mgh ゆえに x=1.4m よって 0+1/2×50×x=49 2 49 7.02 *'-10-30.00 x2= == 25 5.02 ③弾性力による位置エネルギー =1/2/kx2

解決済み 回答数: 1
物理 高校生

これの(3)がわかりません。

403 ころ、 の電 sin wt, EL 影響で送電先の電圧が送電元の電圧より大きくなることがあり問題。 物理 例題 91 交流のベクトル表示 物理 基礎 物理 406 抵抗R, コイルL, コンデンサーCを直列に接続し、 電圧の実効値が20Vの交 流電源に接続したところ、 実効値2.0A の電流が流れた。 この場合のLのリアク タンスを20Ω, Cのリアクタンスを15Ωとする。 (1) LとCの電圧の実効値 Vre [V], Vce 〔V] を求めよ。 (2) 電圧のベクトル図より, 電源の電圧に対する電流の位相の遅れ [rad〕 と, 抵 抗にかかる電圧の実効値 VRe 〔V〕 を求めよ。 (3) 電源電圧 V [V] 時刻f[s] を用いて V=20√2 sin 100t と表されるとき 電 [流I[A] を式で表せ。 3.14 とする 解答 (1) 交流の角周波数をw 〔rad/s], ● 138 センサー 電圧に対する電流の位相 ・抵抗→同じ。 ・コイル→だけ遅れる。 電流の実効値を I [A], Lの自己インダ クタンスをL[H], C の電気容量を C[F] とすると,VLe = wLI=20×2.0= 40[V] VLe+Vce 40V 1 120V ・コンデンサー Vce= - I = 15×2.0= 30[V] wC 10V VRe →だけ進む。 センサー 139 RLC 直列回路の交流のベ クトル表示 (電流ベクトルを右向きに 描くとすると) ・抵抗にかかる電圧 VRe は 右向き。 ・コイルにかかる電圧 Vre は上向き。 ・コンデンサーにかかる電 圧Vce は下向き。 ・電源電圧 V は, Ve=VRe+ Vie+Vce センサー 140 (2) 共通に流れる電流I を右向きのベクト ルとし、反時計回りを位相の進む向き とすると,Rにかかる電圧 VRe の位相は 電流と位相が同じなので右向きに描く。 Lにかかる電圧 VLe の位相は電流より位 π 30V Vce 相が今だけ進むので右図の上向きに描 く。Cにかかる電圧Vcの位相は電流よりも位相が今だけ遅 2 れるので上図の下向きに描く。 電源の電圧の実効値 V は, 数学的にVe=Vre + Vre+ Ve となることから,各ベクトルの 大きさを考えると, 上図のようになる。 この図より Vre+ Vcel = 10[V] となる。 よって, sinθ= | Vie + Veel_10. | Vel =0.50 20 π これより,0= - 〔rad〕 ......① 6 交流回路の瞬時値は,最大 値と位相を別々に求める。 π *te, VRe = V COS =20x 2=10√3=10×1.73=17.3 2 注 電圧や電流の最大値や位相 TRO 17(V) [ 29 などは, ベクトル表示による方 法でなくても、公式を用いて計 算で求めることができる。 (3) 電源の電圧の最大値を Vo [V], 電流の最大値を I〔A〕とす ると,V=Vosin wt のとき, I=Isin (wt-0) と表されるから, ①II より 最大値と位相を考えると, I= 2.0√2sin100㎖t- 6 29 交流と電磁波 255

回答募集中 回答数: 0