学年

教科

質問の種類

物理 高校生

物理力学【鉛直面内の円運動】に関する質問です。 運動方程式についてです。 鉛直面内の場合、物体が上昇しているとき重力の影響で接線方向に生じる加速度は減少していく、つまり加速度が一定でないので役に立たないと書いてありますが、 向心加速度もそもそも【接線方向の速さベクトル... 続きを読む

74 力学 遠心力を考えると, 半径方向では力のつり合いが成り立つ。 重力を分解して 2より m. T = mg cos0+m ①から”が, それを②に代入すれば Tが分かる。 Miks 絶対に水平方向や新道方面でつり合い式をつくってはダメ動半径方向が ができる。 ここが等速円運動と大きく違う点で、等速円運動なら遠心力を 入れれば力は完全につり合い, 任意の方向でつり合い式ができる。 遠心力を考えない(静止系で解く)なら,運 動方程式をつくる。 2 ひ 02 =T-mg coso 向心力 r r 向心加速度 2 図2のような円筒面上のケースでは,垂直 抗力Nが図1のTと同じ役割をはたす。 上の TをNに代えればよい。 Vo なめらかな円筒面 r 0 ちょっと一言 上昇時, 重力を分解したときの接線方向成 分は,ブレーキの役目をしてスピードを落とす (力からの理解)。 JUSNEURTUN 接線方向では,運動方程式 ma = - mg sin0 からαがわかるが, 等加速度ではなく、あまり 役に立たない。 N mg 0 [①] 遠心力 図2 接線成分 mg

回答募集中 回答数: 0
物理 高校生

名問の森の質問です! ?のところのV1とV2の向きがなぜそうなるか分からないので教えて下さい!

122 電磁気 38 電磁誘導 十分に長い直線導線Lがy軸上 にあり, 1辺の長さ2aの正方形コ イル ABCD が 辺ABをx軸上に, 辺BC を軸に平行にして置かれて いる。 コイルの電気抵抗は R で, コ イルの位置は辺ABの中点Mの座 標xで表す。 装置は真空中に置かれ, 真空の透磁率 μlo とする。 コイルの 自己誘導は無視する。 Foll 導線L に+yの向きに一定電流Iを流し,コイルを一定の速さ で,xy平面上,x軸に沿って導線から遠ざける。コイルがx(a)の 位置を通過するときについて, (1) L による,点A,B での磁場の強さ H1, H2 をそれぞれ求めよ。 (2) コイル全体での誘導起電力の向き (時計回りか反時計回りか)と大 きさVを次の2つの方法で求めよ。 Level (1)★★ (2) (a)★ (b)★ (3)★ Point & Hint 電磁誘導は一般にはファラデーの電磁誘導 の法則に従っている 0 (2) (b) 微小時間⊿tの間の磁束の変化⊿のを調 べる。 といっても, コイルを貫く磁束のはコイ ル内の磁場が一様ではないので(積分しない限 り) 計算できない。 そこで, 変化した部分だけ に目を向ける。 近似の見方も必要。 L D A -2a- M C B (a) 1つ1つの辺に生じる誘導起電力を調べる。 (b) コイルを貫く磁束の変化を調べる。 (3) x=2aのとき, コイルに加えている外力の向きと大きさを求め よ。 (九州大+お茶の水女子大) -V Base 電磁誘導の法則 磁束① = BS V=-N40 4t 一面積S N巻きコイル ※マイナスは磁束の変化を 妨げる向きに誘導起電力 が生じることを表す。 LECTURE (1) A,Bでの磁場は ? I H₁ = 2π (x− a) 2π (x+a) (2a) 直線電流Ⅰのつくる磁場は紙面の裏へ の向きとなり、磁力線を切って進む AD と BCで誘導起電力 V1, V2が図の向きに発生 している。公式V=vBlより V₁ = vμoH₁.2a V2= vμoH22a 2つの起電力が逆向きとなっていることと, H>Hより全体の起電 力は時計回りで (b)微小時間tの間にコイルはx=v4t だ け動き,右の赤色部分で磁束を402 増やし、 灰色部分で4の減らす。 そこで,磁束の変化 40は H2= 40= 40₂ 40₁ =μoH22a4xμoHi・2a4x 2μo lav π (x²-a²) At 符号マイナスは磁束の減少を表している (H) > H2 より定性的にも明らか)。 よっ て, 誘導起電力の向きは、父の向きの磁場 を生じるようにコイルに電流を流す向きで あり、時計回りと決まる。 40=2μoIav V = π (x² - a²) 4t V=V1-V2=2μova (H1-H2)= 2μo Iav π (x²-a²) (3) x=2a より V= 2μo Iv であり、誘導電流 3π えは時計回りに流れ, オームの法則より i = R 38 電磁誘導 2μo Iv 3πR V₁ H₁ v A -x+a H₁ 4x F D 123 H 2 V i V2 A ⊿xは微小なので ③ 磁場はHやHで 一定としてよい。 B H2 4x C i F2 B Iとの向きから, ③ F は引力, F2は反 発力と決めてもよい。

回答募集中 回答数: 0
物理 高校生

最初から分かりません。教えてください🙇‍♀️🙇‍♀️

図1に示すような半径a [m] の導体球Aが真空中に孤立している。 この導体球に電気量 Q [C] を与えた。 ただしQ>0とする。 次の問いに答えよ。 Aa 図 1 [m]x< [m]e C A a 図2 16 [m] (1) 図1で、電荷は A の表面に一様に分布するので、 Aの外側の空間で電場の強さと電位 は球対称となる。 よって, 電気力線は A の表面に垂直に出ていき, その本数の表面全体 の合計はア [本] である。 ただし, クーロンの法則の比例定数は ko [N・m2/C2] とする。 よって, 中心から距離 [m] (≧a) の位置の電場の強さは, 半径rの球の表面積を考えて, [N/C] である。 これはAの中心にQ [C] の点電荷がある場合と同じであるため、 この位置での電位は無限遠を0Vとしてウ [C] となる。 (2) 図2に示すように半径6 [m] (b≧a), 外半径[m] (c>6)の電荷を与えていない中空導 TURAT 体球Bの中に、図1の電気量Q [C] をもった A を 中心を一致させて入れる。このとき 静電誘導によりBの内側表面に [[C] の電荷が現れて一様に分布するため, A の表 面から出た電気力線はすべてBの内側表面に到達する。 このことからAとBの間 (bra) , 電気力線のようすは (1) の場合と同じであることがわかる。 I Bは初め電荷が与えられていなかったので, 外側表面にはオ [C] の電荷が一様に 分布し、Bの外側(≧c) の空間でも電場の強さと電位は球対称となって、 電気力線はB の外側表面から垂直に出ていく。 以上の考察より、 Aの中心からの距離と電場の強さ との関係を最も適切に示しているグラフは カ である。 また, 無限遠方を電位 V=0Vとしたときの距離と電位との関係を最も適切に示しているグラフはキ である。ここで、AとBの電位差を考える。先に述べたように、図2で≧ra の空間 での電場の変化は図1での変化と同じであることから、電位の変化 (電位差) も (1) で考 えた電位の式から求めることができる。 これによると,r=b の電位に比べ,r=αの電位 はク[V] 高いことがわかる。 これは,導体AとBをそれぞれ電極と考えたときの電 位差となる。よって,これらをコンデンサーと考えたときの電気容量Cはケ [F] と 求められる。

回答募集中 回答数: 0