学年

教科

質問の種類

物理 高校生

(3)の解説の変化量のところがわからないです。変化量はどうやって出しているのですか

したがって, 比熱の比は、 例題 S 混合気体 ~ Sast 9912 (5)融解曲 25 29 容積 2.0L, 4.0Lの容器 A, Bが,図のよ うに連結されている。 容器Aにはメタン, 容 器Bには酸素を入れて,ある温度にすると, 圧力はそれぞれ3.0×105 Pa, 6.0×105 Pa だった。コックを開けて気体を混合し、点火 して完全に反応させた後, 元の温度に戻した。 連結管やコック,および, 生じる水 の体積や、水蒸気の蒸気圧は無視してよい。 分子量 CH4=16.0,O2=32.0 点火装置 容器B A 20 想気 (a) f 2.0L 4.0L コック (b) 2 の の (c)】 (1) 反応前の混合気体中のメタンの分圧は何 Paか。 (d) (2) 反応前の容器内の全圧は何Paか。 (3) 反応後の容器内の全圧は何Paか。 KeyPoint 点火前後で温度一定: メタンと酸素のそれぞれにボイルの法則が成立する。 同温同体積 : 圧力比は物質量比に等しい。 ●センサー ●温度一定より, ボイル の法則 piVi=P2V2 ●全圧=分圧の和 ●同一容器内の気体の圧 力比は物質量比に等し い。 →反応による変化量を 圧力で示す。 重要 (1) C 解法 (1) (2) 気体についてボイルの法則が成立する。 混合 後の各気体の分圧を PCH4, Po2 とすると, 混合気体の体積は 6.0Lなので, (2 CH4 : 3.0×10 Pa×2.0L=PcH.〔Pa〕×6.0L PcH=1.0×105 Pa O2 :6.0×10 Pa×4.0L=po〔Pa〕×6.0L Po2=4.0×10 Pa 全圧は,1.0×105 Pa+4.0×10°Pa=5.0×10 Pa (3) 反応前後の物質の量的関係を分圧で考える。 08. CH4 +202 CO2 +2H2O (s) 反応前 〔Pa〕 1.0×105 4.0×100005 変化量〔Pa〕 -1.0×10 -2.0×105 反応後 〔Pa〕 0 2.0×105 1.0×105(無視) 反応後の全圧は、2.0×10 Pa+1.0×105 Pa=3.0×10 Pa 解答 (1)1.0×10 Pa (2)5.0×10 Pa (3)3.0×105 Pa [mL〕| | ル・シャルルの法則 重要

回答募集中 回答数: 0
物理 高校生

θが最大の時に糸を切ったとしたら、おもりはどの方向に自由落下するんですか?

出題パターン 単振り子の周期公式 長さの軽い糸の一端に質量mのおもりを つけ、他端を天井に取りつける。 糸が鉛直になるおもりの位置を原点として、 おもりの通る円弧に沿って軸を定める。 おも りを原点から微小変位させて静かに放したと ころおもりは単振動した。 この単振動の周期 Tを求めよ。 微小角 0 に対する近似 sin99 を用いてもよい。 重力加速度の大きさを”とする。 解答のポイント! まつく m 円弧に沿った方向の加速度をαとして、 座標 xにおける運動方程式を立てる。 与えられた近似と弧長公式 (弧長) (半径)x (中心角)を用いると, (ma=-kx/ の形にもっていける。 解法 この形をつくる!! 円弧状のx軸が与えられている。 単振動の解法3ステップで解く。 STEP1 STEP2 振動中心はつりあいの位置 x = 0 の点。 折り返し点は放した点。 STEP3 図9-20のように, 座標 xでの糸 の傾きを 0 とすると, 弧長公式により, (弧長x) = (半径1) × ( 中心角0 ) 張力S ① +x向きの加速度をαとして, 運動方程式は, ma=mg sin O 0 弧長 mg (近似より) = - mg ○(①) mg xx よって運動方程式の形より, Im 周期T=2 =2 mg g mg 図9-20 し x=lo (この周期は」とのみで決まりや振れ幅にはよらない。) STAGE 09 単振動 1

回答募集中 回答数: 0
物理 高校生

これの(2)と(3)が解説を読んでも分からないので教えて頂きたいです!!

基本例題 2 速度の合成 4,5,6 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船で 移動する。 2.0m/s 2.0m/s (1) 同じ岸の上流と下流にある, 72m離れた点A と点Bをこの船が往復するとき,上りと下り に要する時間 t [s], t2 [s] をそれぞれ求めよ。 a (4) 13060m 72m A (2) この船で川を直角に横切りたい。 へさきを向けるべき図の角0 の値を求めよ。 ◆(3) (2) のとき, 川幅60m を横切るのに要する時間 t [s] を求めよ。 BAの向きに 4.0+(-2.0)=2.0 指針 (2) 船 (静水上) の速度と川の流れの速度の合成速度の向きが, 川の流れと垂直になればよい。 解答 (1) 上りのときの岸に対する船の速度は 72 [注] 川を横切る船は, へさきの向きとは 異なる向きに進む。 Q R 60° 2.0 (3)合成速度の大きさを v [m/s] とすると, 4.0m/s v 60% 直角三角形の辺の比より P2.0m/s v=2.0x√3m/s m/s だから= =36s 下りのときの岸に対する船の速度は ABの向きに 4.0+2.0=6.0m/s 72 6.0 だから t2= -=12s (2) 船が川の流れに対して直角に進むの で,右図のように, 船 (静水上) の速 度と川の流れの速度の合成速度が, 川の流れと垂直になる。 ここで △PQR は辺の比が1:2:√3の直 角三角形である。 よって 0=60° この速さで60mの距離を進むので 60 t=- 2.0x√3 60×3 2.0×3 -=10√3s ここで,√31.73 として t=10×1.73=17.3≒17s [注 √3=1.732 ··· や, 21414... など の値は覚えておこう。

回答募集中 回答数: 0
物理 高校生

最後の行の式の変形のやり方が分かりません。

すだけ 出題パターン 45 波式 STAGE 12 の42 (p.141) のグラフで, x=0.9 〔m〕の位置に固定端を置 いたときの (1) 入射波 (2) 反射波の波の式を求めよ。 解答のポイント! 反射波は原点でのy-tグラフ(p.142 の(3)を参照) からつくる。 解法 (1) 波の式のつくり方3ステップ (y-x グラフ)で求める。 STEP1 図 13-12 の t = 0 での波の式は, ×102 (m) y 2π y=-2.0×10-2sin 0.8 EP2 vt = 4.0t 平行移動。 0 STEP3 時刻 t での波の式は, xx - 4.0t とおきかえて, -2.0 2.0- 4.0t t=0 t=t S 0.8 注目! 図 13-12 上のy=-2.0×10 sin- (x-4.0t) 2л 0.8 = 2.0 × 10²sin10л (t-- x 4 (2) 波の式のつくり方3ステップ(y-tグラフ)で求める。 STEP1 原点 x=0での y-t グラフは図13-13 で, 2π y=2.0×10™sin STEP2 x=0からx=0.9[m] 0.2 ×10-2〔m〕 y 2.0 2018-x 4.0 で反射してx=x に戻るまで (図 13- -2.0+ 14) の時間は, 0.9+ (0.9-x) = 1.8-x (s) 4.0 4.0 さらに固定端反射で上下ひっくり返ることも 合わせて図 13-13の反射波のグラフが描ける。 |x=x| 注目! 0.2 図13-13 0.9- <反射 > -0.9-x 図 13-14 2л STEP3 固定端反射した波のx=xでのy-tグラフの式は, y=-2.0×10^'sin 1.8-x =2.0×10^cos10 t+ (+) 0.2 4.0 上下ひっくり返る おきかえる ヒント! sin (A-12/27)=sin (4-1/2) =-COSA STAGE 13 波の式のつくり方 151

解決済み 回答数: 1
物理 高校生

青い所で物理では分数はダメなのでしょうか?解説お願いします🙇‍♂️

チェック問題1 等加速度運動の「3点セット」 第5分 次の等加速度運動の 「3点セット」 初期位置 x, 初速度 Vo, 加速度αを表にせよ。 さらに, 時刻 t での速度vと座標を, tを使って表せ。 (1) (2) t=0s 4m/s2 3m/s t=0s 10m/s t=2s 4m/s 軸 軸 x〔m〕 x(m) 2m 0m Step 3 初期位置 Xo 0m 初速度 ひ 10m/s 加速度 α -3m/s2 [公式] より v=10+(-3)t=10-3 t...... 答 [公式]より 2 1 x=0+10t+m×(-3)t2 =10t-1.5t2...... 答 は座標だよ! 移動距離じゃな いからね。 解 説 (1) 《等加速度運動の解法〉 (p.21)で解く。 Step 1 軸はすでに立っている。 (2) Step 2 与えられた図より, 「3点セット」 の表は, 初期位置 Co 2m 初速度 ひ 3m/s 加速度α 4m/s2 Step 3 [公式] (p.17) より, v=3+4t・・・・・・答 [公式] (p.18) より x=2+3t+1/2 x4t2 =2+3t+2t2. 箸 は座標だよ! 移動距離じゃな いからね。 さあ、次の問題で等加速度運動の総まとめをしよう。 Step 1 軸はすでに立っている。 Step2 加速度だけ不明なので, 求める必要がある。 加速度αとは, 1秒あたりの速度の変化なので. (4-10) m/s変化 a= 2秒間で -=-3m/s2 つまり,αは負で減速運動となっている。 以上より, 「3点セット」の表は, いつも座標を意識 している人は物理 が得意になれるよ 22 物理基礎の力学 第2章 等加速度運動 23

解決済み 回答数: 1
物理 高校生

(2)においてばねの伸びがa-xになるのは何故ですか? a+bだと思ったのですが

出題パターン 鉛直方向への物体の単振動 XA a ばね定数のばねを鉛直に立て、床に固定する。 ば ねの上端に質量の薄い板Bを取りつけ, 板の上 質量の小球A を乗せると、 自然長からだけ縮 んで静止した。 このつりあいの位置を0として、 鉛直上向きに軸をとる。 また、 重力加速度の大きさ をgとする。 (1) ばねの痛み α を求めよ。 次に板B をつりあいの位置から、さらに (0) だけ下げて静かに放すと、 AとBは一体となり単振 動した。 小球Aと板Bの単振動の周期を求めよ。 (3) 位置における, 小球 Aの速さを求めよ。 0 eeeeeee 1-2xy (4) 小球Aが板Bから受ける垂直抗力N の関数として表せ。 代入して などと (5) 小球Aが板Bから離れないもの条件を求めよ。 解答のポイント! A. B間に働く垂直抗力をNとして, A, B それぞれの運動方程式を立て N を求め, AがBから離れる 垂直抗力NO を用いる。 解法 (1)問題文の図で、力のつりあいより (a-x)だけ元に 戻ろする ポイント!! (M+m)g=ka M+mg ... 00 k 今後の式変形に、この人を フル活用することになる。 (2) 単振動の解法3ステップで解く。 X1 必ず向きを Ma +9 れない条件 STEP1 x 軸は与えられている。 STEP2 振動中心は、つりあいの (白)a 位置x=0の点。 折り返し点は速さ0で静かに放し そろえる α ka at Mg x = -b と, 振動中心に対して対 称の位置にあるx=bo X(中)0* mg 図9-8 自然長はx=αの点。 STEP3 9-8 のように、加速度をα. A,B間の垂直抗力をN ると, 図9-8 より A,Bの運動方程式は,

解決済み 回答数: 1