学年

教科

質問の種類

物理 高校生

(1)の問題を1からわかりやすく教えてください 式をどのように立てるのか詳しく教えていただきたいです お願いします

基本例題21 熱機関の熱効率 基本問題 174, 175 仕事率 70kW,熱効率30%のディーゼル機関がある。この熱機関は,重油を燃料とし て仕事をする。1.0kg あたりの重油の発熱量を4.2×107Jとして,次の各問に答えよ。 (1)ディーゼル機関が1時間にする仕事はいくらか。 (2)仕事を1時間したとき、仕事に変わることなく外部に捨てられた熱量はいくらか。 (3) 仕事を1時間したとき, 消費された重油は何kg か。 指針 (1) 仕事率は, 1s間あたりの仕事 である。 すなわち, 70kW=70×103W の仕事率 では, 1s間に 70×10°Jの仕事をしている。 (2) 熱効率が30%なので、 重油の発熱量のうち, 30%が仕事に変わっている。 3) 1時間の重油の発熱量からその質量を求め る。 ■解説 (1) 1時間は60×60=3600sであ る。 求める仕事 W'[J] は, W' =70×10°×3600 = 2.52 × 10° J 2.5×10J 2) 重油の1時間あたりの発熱量を Q [J] とす ると、 熱効率の式 Te= W' -」 から, (1) で求め Q₁ た値を用いて, 0.30= 2.52×10° Q₁ Q=8.4 × 10°J 外部に捨てられた熱量を Q2[J] とすると, W'=QQ2 の関係から、 Q2=QW'=8.4×10 -2.52×108 =5.88×10°J 5.9×10°J (3) 1時間に消費される重油の質量を m[kg] すると, 1時間の発熱量 Q, [J] は,次のよう 表される。 Q=m×4.2×107 したがって,(2)のQの値を代入すると, 8.4×108 Q1 m=. = =20kg 4.2×107 4.2×107 6. 熱とエネルギー

解決済み 回答数: 1
物理 高校生

この問題の(4)で(ΔB/B)^2の項は無視してるのにΔB/Bの項は無視していないのはなぜですか?

133. <ベータトロン〉 時間変化する磁場による荷電粒子の加速について考えよう。 図のように、原点Oを通り互いに直交するx軸, y 軸, z軸をと る。 AB (1) 等速円運動する荷電粒子の速さを求めよ。 2軸の正の向きに一様で時間変化しない磁場が加えられてお り,その磁束密度の大きさをBとする。この磁場中に質量 m, 電荷 g (>0) の荷電粒子を入射したところ,xy 平面上で原点O を中心とする半径rの等速円運動をした。 y m x v 荷電粒子の円運動は,半径rの円形コイルを流れる電流とみなすことができ,円形コイル を貫く磁束はBで与えられる。このことを用いて, 磁場を時間変化させたときの荷電粒 子の運動について考える。ただし,この電流がつくる磁場は無視できるとする。円形コイル 内部と円形コイル上の磁束密度の大きさを時間とともに一様に増加させる。増加を開始して から微小時間 ⊿t 経過したとき,磁束密度の大きさは微小量⊿B (>0) だけ増加した。 なお、 (4)(5)では2つ以上の微小量どうしの積は無視して計算すること。 (2) 円形コイルに誘導される電場の大きさを求めよ。 闘 (3) 誘導された電場により荷電粒子の速さは増加する。 その理由を述べ, 速さの微小な増加 量⊿v を求めよ。 *(4)磁場の増加により円運動の半径は変わらないと仮定して,荷電粒子にはたらくローレン ッカの大きさと遠心力の大きさを計算し,ローレンツ力は遠心力より大きいことを示せ。 したがって,磁束密度を一様に増加させると軌道が円からずれる。 元の円軌道を保つには, 磁束密度の増加量を一様ではなくすればよい。 このとき,円形コイル内部の磁束密度の大き さの平均値をĒとすると,円形コイルを貫く磁束は2万で与えられる。微小時間⊿t経過 する間に, Bを微小量 4B 増加させ, 円形コイル上の磁束密度の大きさを⊿B'増加させたと ころ,もとの円軌道が保たれた。だだし、磁束密度の大きさはz軸からの距離と時間だけに 依存するものとする。 (8) AB4B' の比 AB AB' を求めよ。 〔22 大阪公立大〕

解決済み 回答数: 1
物理 高校生

(2)の後半の「遠心力が重力より勝っていればたるまない」から、(遠心力)≧mgという式だと考えたのですが、解答では(張力)≧0となっていてそれが何故か分かりません。θ=180°において張力がある場合下向きに力が働くと思い、だとするとたるんでしまうと考えています。解説お願いします!

チェック問題 2 振り子の円運動 糸の長さ おもりの質量mの振り 子がある。 おもりに最下点で初速度 v を与えた。 標準 6分 (1) 振れの角が0のときの糸の張力T を求めよ。 (2) 糸がたるまずに1周するには vo はいくら以上必要か。 解説 (1) 《円運動の解法》 (p.191) で解く。 STEP 1 中心は点O 2 半径1, 3速さ” M m 45 は未知。 さぁ、どうやって求める? 速さときたらエネルギー。 いまは, 摩擦熱は出てな いから《力学的エネルギー 保存則》 (p.162) ですよ。 ☐ キミの言うとおりだ。 式を立てると, Vo mg 2 = mvo -m² + mg/l(1-cos 0 ) 遠心力 図 a よって、v=√vo2-2gl(1-cose) STEP 「回る人」から見て,遠心力 m を作図 STEP 3 重力を半径, 接線方向に分解しよう。 ここで糸は伸び縮みしない ね。このことから,半径方向には確実に力のつり合いが成り立つので, v² T T = mg cos0 + v² ② mT ②に①を代入すると, Vo 2 - T=m + g(3 cosa - 2)} ...... CS CamScanner でスキャン 第15章円運動 | 193

解決済み 回答数: 2
物理 高校生

垂直抗力Nについて詳しく教えてください! 自分の解釈では重力mgに対して反作用的に地面などから受ける力だと思っていたのですが、この問題の(2)の図bで、「台は小物体から垂直抗力の反作用の力Nを受けて」とあり、反作用の反作用は作用だからN=mgcosθじゃん!って思ってしまい... 続きを読む

ICS チェック問題 2 台の加速度が未知のとき 質量Mで傾角30°の台を、なめら かな水平面の上に置いた。 ここで, 質量mの小物体を台のなめらかな 斜面上に乗せた。 税込 15 分 う〜ん、 小物体についてはもうこれ以上立てられないし~。 L まだ式を立てていない物体がある 力の作図 慣性力 ナシ! (1)台の加速度を右向きにAとし, M 130° え〜と, →A あ! 台自身ですか? 1 30° 反作用のカ 'N 図 b 台上から見た小物体の加速度を斜面に沿って下向きにと して, 台上から見た小物体の運動方程式を立てよ。 (2) a, A をそれぞれ求めよ。 (3) 小物体が台上をLだけすべるのに要する時間を求めよ。 解説 (1) いつものようにだれから見て,どんな慣性力を受けるのかを 言ってみて。 気付いたね。 そこで,床から見た 台の運動方程式を立てよう。 図bで, 台は小物体から垂直抗力の反作用 (p.55) の力Nを受けて, 右向きに運動 している。ちなみに、今回は床から見ているから、慣性力は全くなしだ よ。見る人に注意! Nを分解して水平方向の運動方程式を立てると 台の加速度が未知のときは、 いつも床から 見た台の運動方程式を立てるよ MA=Nsin30° ハイ。 右向き A の加速度をもつ台の上から見るので、慣 性力は左向きに mA です。 以上で,3つの未知数a, A. Nで式 ① ② ③がそろった。 ②③に代入して MA = 優 いいぞ。 垂直抗力をNとして軸方向 に慣性力と重力を分解する (図a)。 N 方向の運動方程式は. 慣性力 ma=mAcos30°+mg sin 30° 土 mA+ 30 ...... y 方向の力のつり合いの式は、 x N + mAsin30°= mg cos30° ・② 30° 図 a (2)(1)で立てた①②の式だけで, a. A は求まるかな? 未知数がα A, N の3つもあって、 2つの式①、②だけ では足りません。 あと1つどうしても式が欲しいです。 いかにも。じゃあ、あと1つの式はどうやって立てるの? CamScannerキャン 180 | 物理の力学 mg - 1/2mA/1/2 √3 -mo よって, √3m (M+1m)A = mg T. A=4M+m ①より, a= √3 1 -A + 2 2(M+m) 294M+m ④より (3) 台の上から見て、台上に軸を立 てる (図c) = x=Lより, 等 加速度運動の [公式] (p.20) より ~g ⑤ g = 2L ..t₁ = a = L(4M+m) 答 (M+m)g ⑤より t=0 (対台) t=t 04 図 C 第14章 慣性力 181

解決済み 回答数: 2