学年

教科

質問の種類

物理 高校生

熱についてです (1)と(2)の解き方を詳しく教えていただきたいです また、(1)の400×4.2+120は温度である20も入れて400×4.2×20+120にならない理由もあわせて教えていただきたいです  よろしくお願いします

発展例題11 氷の比熱 質量400gの氷を熱容量 120J/Kの容器に入れ, 容器に組みこんだヒーターで熱すると、 全体の温度 は図のように変化した。 熱は一定の割合で供給され すべて容器と容器内の物質が吸収したとし, 水や氷 の水蒸気への変化は無視できるものとする。 また, 水の比熱を4.2J/ (g・K) とする。 (1) ヒーターが供給する熱量は毎秒何Jか。 (2) 氷1g を融解させるのに必要な熱量は何か。 指針 (1) 254s以降の区間では,氷はす べて水に変化している。 水と容器の温度上昇に 必要な熱量から、ヒーターが毎秒供給する熱量 を求める。 (2)温度が一定の区間 (32~254s) では,供給さ れた熱量はすべて氷の融解に使われる。 これか ら、氷1gの融解に必要な熱量を求める。 (3) 氷と容器の温度が上昇する区間 (0~32s)で, 温度上昇に必要な熱量から、 氷の比熱を求める。 【解説 (1) 水と容器をあわせた熱容量は, 400×4.2+120=1.8×10°J/K 254~314sの間に供給された熱量で,水と容器 の温度が0℃から20℃まで上昇するので, ヒー ターが毎秒供給する熱量を Q[J] とすると, 20 0 -20 ●温度(℃) →発展問題 177 /32 254 314 時間 (s) (3) 氷の比熱は何J/ (g・K) か。 (1.8×10)×(20−0)=Qx (314-254) Q=6.0×102J (2)32~254sの間に氷はすべて融解した。 氷1g を融解させるのに必要な熱量をx 〔J] とすると, 400×x=(6.0×10^)×(254-32) x=3.33×102J 3.3×103J (3) 氷の比熱をc [J/ (g・K)〕 とすると, 氷と容器 をあわせた熱容量は, 400×c+120[J/K] 0~32sの間に供給された熱量で、氷と容器の 温度が20℃から0℃まで上昇するので, (400×c+120) x{0-(-20)} =(6.0×102) x (320) c=2.1J/ (g・K) ※展問題

回答募集中 回答数: 0
物理 高校生

独立部分の電気量が保存されるのは分かりますし、 合成容量の式も使えないのも分かります ですがどうして直列回路の電気量は同じになるのに、 この場合は同じではないのでしょうか。 あらかじめ充電されているからですか?

例題 114 30Vに充電された2つのコンデンサー C, (10μF)とC2(20μF), 起電力 90Vの電池およ びスイッチSからなる回路がある。 スイッチS を閉じて十分に時間がたった後, C および C2 に蓄えられる電気量と電位差をそれぞれ求めよ。 30 V + 30V S 90 V 解 電気量保存 +300μC-300μC: + 10V-10V HI +600μC 600μC THE +20V220V2 90 V Sを閉じた後の C と C2 の電位差を V, V2 とする。 図の破線で囲まれた 部分は外部から孤立しているので, Sを閉じて全体の状態が変化しても、青 気量は一定である (電気量保存)。 したがって -300+600= -10V1 +20V2 ...① ただし, 単位はμCである。 また, Sを閉じることにより電池の起電力 90Vは C, と C2 のコンデンサー全体にかかるので 90= V1 + V2 式①②より V1=50[V] V2=40[V] ...② また,C,に蓄えられる電気量はQ=C,V,=500[μC] C2に蓄えられる電気量は Q2=C2V2=800 [μC] なお、このようにコンデンサーが初めに充電されているときは、直列接続の 公式が使えないことに注意したい。 ココが ポイント 孤立した部分では電気量は保存される。

回答募集中 回答数: 0