学年

教科

質問の種類

物理 高校生

高1物理基礎の問題です。初歩的な質問なのですが、 写真の(1)の答えがなぜ「14.0m/s」と有効数字3ケタで表されるのかわかりません。 わかる方教えてください🙇

リードC 例題 6 等加速度直線運動 第1章 運動の表し方 11 13,14,15,16,17 解説動画 東西に通じる直線道路を東向きに 8.0m/sの速さで進んでいた自動車が,点 8.0m/s 0を通過した瞬間から東向きに 2.0m/s2の一定の加速度で 3.0秒間加速し, そ の後一定の速度で進んだ。 (1) 加速し始めてから3.0秒後の自動車の速度はどの向きに何m/sか。 (2) 加速し始めてから3.0秒間に自動車が進んだ距離は何mか。 (3) (1)の速度で進んでいた自動車はある瞬間から一定の加速度で減速し, 20m進んだときに東向きに6.0m/s の速さになった。 加速度はどの向きに何m/s2 か。 指針 v=vot at ...... ①, x=vot+ +at² ....②, v-vo2=2ax t が関係する (与えられている, または求める)場合は①式か②式、そうでない場合は ③式を使う。 ① 式と②式はと xのいずれが関係するかで判断する。 解答 東向きを正の向きとする。 (1) 速度を [m/s] とすると, ①式より v=8.0+2.0×3.0=14.0m/s よって、 東向きに 14.0m/s (2)x [m] 進んだとすると, ②式より x=8.0×3.0+ ×2.0×3.02=33m (3) 加速度をα [m/s] とすると,③式より 6.02-14.02=2α×20 36-196=40a よって a=-4.0m/s² したがって、 西向きに 4.0m/s2

解決済み 回答数: 1
物理 高校生

7、8、9の解き方を教えてください🙇‍♀️

10 ★ 基本 7 自由落下と鉛直投げ上げある高さから小球Aを自由落下させると同時に,その真 下の地面から,小球Bを速さ9.8m/sで鉛直に投げ上げると, 高さ 4.9m の位置で 両者が衝突した。鉛直上向きを正とし,重力加速度の大きさを9.8m/s2 とする。 (1)A,Bが衝突するのは,Bを投げてから何秒後か。/秒後 (2)衝突直前のA,Bのそれぞれの速度は何 m/s か。 【3) Aを落下させ始めた点の高さは何m か。 A-9.8 B A 衝突 B 9.8m/s ★★ 標準 8 気球からの投射 気球が,地上から初速度0で鉛直上向きに一定の加速度で 上昇し, 40 秒後に高さ98mに達した。 このとき,気球から小球を静かには なした。重力加速度の大きさを9.8m/s2 として,次の各問に答えよ。 0.12m/52 気球の加速度の大きさは何m/s2 か。 (2)地上から見て, 小球をはなしたときの小球の速度を求めよ。 (3)地上から見て,小球が最高点に達するのは,小球をはなしてから何秒後か。 (4)小球が地面に達するのは,小球をはなしてから何秒後か。 高さ 98m 気球 ucto 小球を 落下 ヒント (2) 地上から見ると, 小球は,そのときの気球と同じ速さで,鉛直上向きに投げ上げられた運動に見える。 ★★ 標準 思考 ⑨9 鉛直投げ上げ時刻 t=0のときに,地面から小球をある速さで鉛直上向きに投げ上げた。 小球は, 時刻 t で最高点に達した後, 時刻 t で地面に落下した。 (1)小球の地面からの高さ」と時刻tとの関係を表すグラフとして最も適当なものを1つ選べ。ま た,その理由も答えよ。 ① YA A A A A t t₁ t2 t₁ t2 2 t2 (2)地面から最高点までの高さはん 〔m]であった。月面上でこの小球を同じ速さで投げ上げた場合, 最高点の高さは何m か。ただし,月面上における重力加速度の大きさは地上の1とする。 (2) 初速と地上の重力加速度の大きさをそれぞれ記号で表し, 小球が達する最高点の高さを求める。 第1節 物体の運動 49

回答募集中 回答数: 0
物理 高校生

(2)の右ねじの法則の考え方がわからないです。教えて頂きたいです。よろしくお願いします。

120.〈直線電流と円形電流がつくる磁場〉 図1に示すように、互いに直交するx軸, y 軸, z軸をとる。 z軸に平行で無限に長い導線 1と導線2を考える。導線1は原点O(0, 0, 0)を通り, 導線2は点Q(2d, 0, 0) を通る。 導 線1には直線電流Iがz軸の正の向きに、導線2には直線電流Iがz軸の負の向きに流れ ている。ただし,電流の大きさは L<I とする。 導線の周囲の物質の透磁率をμとして, 次の問いに答えよ。 向きについての解答は, 「z軸の正の向き」のように、軸の名称と正負で 答えよ。 (1) 導線1の長さの部分が導線2のつくる磁場から受ける力の大きさFを, I, Iz, μ, d, を用いて表せ。 またその向きを答えよ。 (2)P(d, 0, 0) での磁場の強さを, I, I2, μ, dの中から必要なものを用いて表せ。 ま たその向きを答えよ。 次に図2に示すように, 点R (4d, 0, 0) を中心に半径dの円形コイルを xz 平面内に置き, dos それに電流を流す。 (3)点Rでの磁場の強さが0になったとする。 このときの円形コイルに流れる電流の大きさ Iを, I と Iを用いて表せ。 また, 点S(5d, 0, 0)での電流Iの流れる向きを答えよ。 導線1 導線2 導線1 導線2 11 12 I PQ I2 Q R S 2d 4d 5dx d 2d x 図2

回答募集中 回答数: 0
物理 高校生

この問題の(3)で、 わたしはビルの高さを求めるのなら、 鉛直投げ上げの公式v=v0t−½gt²の式から出た答え14.7から、(1)で出た答え4.9を引く必要があるのかなと思ったのですが、なぜ引かないんですか? (投げ上げの公式で出た答えは、ビルの高さ+投げ上げた高さですよ... 続きを読む

基本例題 5 鉛直投げ上げ 基本問題34,35,36,37 ある高さのビルの屋上から、 鉛直上向きに速さ 9.8m/sで小球を 投げ上げたところ, 3.0s 後に地面に達した。 重力加速度の大きさを 9.8m/s2 として、 次の各問に答えよ。 9.8m/s (1) 小球を投げ上げてから最高点に達するまでの時間と, 屋上か ら最高点までの高さを求めよ。 (2) 小球が地面に達する直前の速さを求めよ。 (3) 地面からのビルの高さを求めよ。 指針 ビルの屋上を原点とし、 鉛直上向き にy軸をとって,鉛直投げ上げの公式を用いる。 投げ上げられた小球が最高点に達するとき,その 速度は0となる 。 解説 (1) 速度が0となるときが最高点 になる。 求める時間t[s] は, 「v=vo-gt」 から, 0=9.8-9.8xt\mt=1.0s 求める高さを y〔m] とすると, 地面 負の符号は,速度が鉛直下向きであることを表 している。 (3) 求める高さは,投げ上げてから 3.0s後のy 座標 y〔m〕の大きさである。「y=vot-12gt-」 2\m0. から, y2=9.8×3.01 ×9.8×3.02=-14.7m m0 これは,屋上を原点としたときの地面のy座標 である。したがって、ビルの高さは15m T 「y=vot-1/2gt2」から、 y=9.8×1.0 11/13× ×9.8×1.02=4.9m (2) 求める速さは,投げ上げてから3.0s後の速 さである。 「v=vo-gt」から, Point 軸の原点を地面にとるとは限らない。 屋上を原点にとって、 鉛直上向きを正としてい るので、地面の座標は負の値で表される。 v=9.8-9.8×3.0=-19.6m/s 20m/s

解決済み 回答数: 1
物理 高校生

どうして対象のOを取ろうとしたのか教えて欲しいです

迷 から、uk√(kは比例定数) とおける。 水深 9.0mの領域 における波の速さを [m/s] 浅瀬における波の速さを [m/s] 水深 9.0mの領域の水深をん(=9.0[m]), 浅瀬 01 より、 の水深を〔m〕 とすると, 屈折の法則 n12=- V2 h₁ 19.0 9.0 = V2 V h2 V h₂ ゆえに h= =3.0[m] 3 60° (4) 右図のように, hhhs の水深が海岸に近づくほど小さ くなる海底が続いているとすると,射線は矢印のように回り 込んでくる。 海岸に近いところでは水深が0mに近づくので, において 波の速さも0m/s に近づく。 屈折の法則 sin V2 20m/sと考えると, sinr→0, すなわち, 0°となる。 したがって, 屈折角は 0° に近づく。 これは, 波面が海岸線 と平行になることを意味する。 146 4個 (4) 深さ h3 ha h5 海岸 146) センサー34 指針 反射波を別の波源から出た波として、干渉条件を考える。 ● センサー35 センサー 36 [解説] 壁に関して Oと対称な点を O' とすると, 反射波は O' から 出たように見える。 壁での反射 で波の位相が変わらないので, 0.0' は同位相の波源と考えれ ばよい。 ここで, 波の干渉の平面図は, 81 10A 波源を結ぶ線分上にで きる定在波を拡張して 考える。 O'B=√(6入)+(8)=101 1.8 A より |O′B-OB|=|10入-8入|=2入 31- -37 m=2 m=0 面に達し との交点 2入=1×2m (m=2) 2 HB 発する素 える。 -38 と書けるので,Bは, 壁 から左向きに数えて2番 目の, 0から出た波とそ の反射波が強め合う線 線が通る。 また, 波源 0 0′ を結ぶ線分上 にできる定在波の節や腹の 位置をもとに,節線や腹線 の様子を描いて解く。その とき,m=01 2 … の どの条件にあてはまる節線, 腹線であるかを示しておく こと。 3 5 ---- 81 別解 線分OB上の点を Pとすると -31- 11 10'0-0|=6入 であり , -x2m (m = 6) 1/2× と書けるので,Oは6番 61=- 。 目の強め合う線が通る。 0 m=6543210 A したがって, OB間には5本の腹線が通る。 2本の腹線の間に節線が1本ずつあるので, 線分 OB上に波が 互いに弱め合う点は4個ある。 2≤ | OP-OP|≦6入 である。 波が弱め合う条件 から, 21≤(2m+1) ≤61 を満たす整数の個数を 求めてもよい。 波の反射では,反射面 について波源の対称点を考 えるとよい。 油の +9

回答募集中 回答数: 0