学年

教科

質問の種類

物理 高校生

106(オ)がわからないです

(2)図の最初の状態にもどる。すなわち,各スイッチは開いており、 (4)各コンデンサーの耐電圧(耐えられる電圧の限界)がすべて 45Vであるとき,合成コンデ C, Dの電位はそれぞれ Va=V(V), Va=Dオコ×V[V). [V/m]である。導体板 A, B, C, D間に蓄積されている静電エ 図1のように、十分に広い面積Sをもった平行板コンデンサーにおいて, 左側の極板Aは この状態でスイッチ S.のみを閉じた。このとき, 専体板A, B, どの導体板にも電荷は蓄えられていない。次の2つの操作後の結果を比較しよう。 d(m)、2d (m), 3d[m) とする。ここで, dは導体板の辺の長さ aと比較して十分小さいと する。国中のS,Sa. Siはスイッチを表している。 電源Vは電圧「V[V) の直流電源であり。 操作a):スイッチ S」を閉じ,しばらくしてスイッチ S,を開く。 それからスイッチS.を る文章を解答群から選べ。ただし、 数式は C, V、 dのうち必要なものを用いて答えよ。 2つの導体板 A, Bを平行板コンデンサーとみなしたときの電気容量を CIF) とする。 導体板Dは電源の負極とともに接地されている(接地点の電位を基準V とする。 また。 84 コンデンサー 85 標準間■ A つり最初の状態ではどの事体数にも電荷は書えられていたい。 °104.(コンデンサーの合成容量) 6.0Vの直流電源Eと,電気容量がそれぞれ 3.0μF, 1.5μF, 2,0μF, 2.0μFの4つのコンデンサー Ci, Ca, Cs, C4を図のように 接続し、十分に時間を経過させた。各コンデンサーは,接続する前 は電荷をもっていなかったものとして,次の問いに答えよ。 (1) 4つのコンデンサーの合成容量 C [uF] を求めよ。 (2)各コンデンサーに加わる電圧 Vi. Vz, Vs, Va [V), および蓄えら れた電気量Q,Q, Q, Q [C] を求めよ。 (3) 各コンデンサーに蓄えられた静電エネルギーの合計び [J] を求めよ。 C C。 S」 し ×V (VJ, Vo=UV である。導体板BとCの向かい合 C。 れらの間の空間に発生する電場は図で右向き, その強きは AB C E ネルギーの合計はオ|×CV2[J] である。 通体所の間属は拡大して かいてある ンサーとしての耐電圧 Vimax (V] を求めよ。 105.(ばね付きコンデンサー) (10 群馬大) 閉じる。 固定されているが、右側の極板Bは壁に固定されているばね (ばね定数k)につながカて。 て、Aに平行なまま動くことができる。極板が帯電していないとき, ばねは自然の長さのい 態にあり,極板間の距離はdであった。次に,図2のように,極板Aに正, 極板Bに自の筆 荷を徐々に帯電させるとばねは徐々に伸び,最終的に極板Aに +Q, 極板Bに -Qの雷益た 帯電させたところ, ばねの伸びが 4d (Ad <d), 極板問距離がd-ddとなったところでつり あった。真空の誘電率を Eo, 空気の比誘電率を1とする。また, ばねおよび壁の帯電, 重力 の影響はないものとする。次の問いに答えよ。ただし, (2)~~(5)は, Eo, d, k, Q, Sの中から 必要なものを用いて解答せよ。 (1) 電気力線のようすを図3に矢印で表せ。 極板間の電場の強さEを求めよ。 極板Bにはたらく電気的な力Fを求めよ。 (4) dd を求めよ。 (5) 極板間の電位差Vを求めよ。 ここで、極板Bを固定し、極板Aに +Q. 極板Bに -Qの電荷 を帯電させたまま、極板間に、比誘電率2の誘電体を図4のよう にゆっくりと差しこんだ。 6 このときの電気力線のようすを図4に矢印で表せ。 (7) Bにはたらく電気的な力は,(3)と比べてどうなるか。 を開く。 初めに操作(a)による結果を考察する。操作終了後,導体板CとDの間の電場の強さは 一カ(V/m] であり,導体板Aの電位は Via=Lキ ×V(V) である。このとき、毒体 新間全体に蓄積された静電エネルギーは,(1)のエネルギーの値オ×CV?[J) の ク]番 である。 一方,操作(b)の場合, 操作終了後に導体板AとBの同に発生する電場の強さはケ (V/m] であり, 導体板Aに蓄えられた電気量は Q=D■コ C) である。 また、事体板 A Bの電位はそれぞれ VAb= サ×1/[V), Vias=■シ×1/(V) となる。この場合、毒 体板間全体に蓄積された静電エネルギーは, (1)のエネルギーの値閉×CV*(J]の ス] 倍である。 したがって、2つの操作後の結果を比較すると次のようなことがわかる。 スイッチS。 を閉じると導体板 B, C間に発生していた電場が消失するので, スイッチを開じた直後。 その分の静電エネルギーが減少する。このとき、 セ」ということがいえる。 (2)の(b)の操作後,しばらくしてスイッチS:を開き、それからスイッチS,を開じた。この とき,導体板Cの電位は V%=[ ソ×1/[V] で, 導体板BとDに蓄えられている電気量 (絶対値)はそれぞれタ×0,[C). 「 チ]×Q&(C) となる。ここで、 &はこのコ(C である。 |セの解答群 3- d-dd- B A B otinl Foom P00000 +Q-91 図1 図2 -Q +Q 図3 +Q *106.(4枚の導体板によるコンデンサー回路) (15 広島市大 改) 図4 (a), (b)で等しくなる 間の静電エネルギーに加算される (14 東京理大改) s」a 51

回答募集中 回答数: 0
物理 高校生

(2)のaなのですがなぜ重力の作用点は棒の中心なのでしょうか?浮力の影響はないのですか?

ヒント 17 〈液体本に浮く棒のつりあい) (2)(C) 『l。を1, h, 0で表せ」 図から求める (d)「力のモーメントのつりあいの式を書け」 浮力の作用点は液体中にある棒の中心 (1)棒の密度 p, 体積 SIから, 棒の質量は pSIである。よって pSlg (2)a) 重力の作用点は,棒の中心であるので, 点Aから棒にそって号の位置で 重力の 作用線 BA ある(図a)。よって, 重力の作用線と点Aとの間の水平距離はCOS0 -cos0 (b) 液体中にある棒の体積は Sloである。その部分にはたらく浮力の大きさ は,アルキメデスの原理により, 同じ体積の液体が受ける重力の大きさと 等しいから pSlog (c) 液面より上にある棒の部分の長さは 1-l。 であるから h=(1-1,)sin0 重力 図a 浮力の作用線 張力 (一)cone h となる。よって 16=1-- sin0 ……の A 1-6) (d) 棒にはたらく力は図bのようになる。ここで, 浮力の作用点は液体中の 長さ。の棒の中心である。よって, 点Aのまわりの力のモーメントのつり あいの式は次のようになる。 PoSlog ASlg-5cos0-ASle(1-)c0 srycmo-ASt(1-}locomomn COS cos 0 pSig 図b 合※A 力のモーーメントは, 「カ×距離」であるので, 両 辺にあるSやgcosθ を消し 1g cos0*A← てはいけない。 物理重要問題集 15

解決済み 回答数: 2
物理 高校生

94の(7)ですが、うなりだけでなく、経路差による波の干渉は考えなくて良いのですか?

スのとが預で 光線の 75 時間 3 Sから出た光の振動数を了, Hから遠ざかる M, に届く光の振動数をと 変位 おくと,「ロ=A」とドップラー効果の式より (図b) ア-- (6 M から反射される光の振動数を f"とおくと、 図cと(5)の結果より 2月.dcosr= COSアーT-sin'r=,/1-/sini)=n-sin'i これを(6の結果に代入すると 2md-sin (8) 入射角i=0° のときに干渉光が明るくなるので,(7)の結果より 2dm-sin'o"=2md (m+ "'Si<90° の範囲で, iを大きくすると光路差2d\n-sin'i は小さくな るので、i=i のときに干渉光が明るくなる条件は 24/m-sini-(m-- 速度 (7)「sin'0+cos'0=1」の関係と(⑥式よょり C-u .c-u_c-u, c+ 入 No ni /m+ よって 2d/n"-sin'i-(m+)a /"=D£ c+u Mが普調者 7 M から届く" の光と, Maから届く子の光が干渉して、黄の場合のうなり 質量 図b カ ……の n当する現象が起きたと考えられるので, うなりの 重力ー 垂直林 20 C+p Tア-| C+u a 2 c 弾 よって,求める周間は M,が“光高 82 05 (スリットによる光の回折) 動摩 ただし、の式より i=0, m=0 では光路差は今となり, iを大きく」ナ。 スリット周隔の最大公約数を考えてみる。 静止 1(4)2離れた波源からの光の弱めあいと、2離れた波添からの光の弱めあいを考える。 1図aより,2つのスリットからPに達する光の光路差は wsin0 である。 慣性 光ま ときに次の極大点をとりえないので,mèl となる。 (2 度 折理 の,6式より 2dVn?-sin'i 2nd m-7 て変 6で初めて弱めあう条件より wsin0,=ー のでは1次の強めあいであるから フモー m+ O1 g2) て よって sin0,= 20 2m-1 Vn"-sin'i (ただし、m=1, 2, 3, …) よって 2m+1 sin0 (整理すると(2m+1)'sin'i,=8mn,") よって sin= た wsinの=0+1×A 03) 薄 12) 2つのスリット間隔は, 30d, 45d, 60d,-75d, 90d, 120d, 135d, 180dの 組合せが考えられる。これらの最大公約数は15d となるから。 15d-sin6,=0+1×iの関係が成りたつとき,それぞれのスリットからの半 図。 中奈A 30dsin8,=2入 45dsin6=32 などとなり、すべてのスリッ トからの先が強めあう。 中※B(参考) N==1 (国9) 暗。 94(マイケルソン千渉計) い A4) (3 (4 え よって sin,= 「15d (3)絶対屈折率nの媒質中では, 波長は一倍になり,光にとっての距離である光学距離はn倍になる。 (6) M.はドップラー効果によって光源が発した振動数とは異なる振動数/'の光を受け取り, その/の光を反射する Mは動いているので, さらにドップラー効果が生じて, D にはS'とは異なる振動数" の光が届くことになる がすべて強めあう#A←。 n 一度 薄膜 次に して入! 射するう ラス板の 3 N=2 (図 10)の場合, 一離れた波源(例えば、 (5 2 の場合 = と考えて、弱 QとQ, Qa とQ)からの光が弱めあう条件は 入※B- 「D (1) ある点と1波長分離れた点の位相差は 2xであるので, 距離 /離れた地点で めあう条件は sing=-- 22 の位相差は 2元ー よって sin0,=ー sin0 DD'D'D一 44 4 (2) 2つの光線の経路差は 2L,-2L2 であるので, これが①式の!にあたる。 離れた波源(例えば, Qi と Qa, Qaと Q)か トD。 5) 中華C 弱めあう条件は x 2(Li-L)_4x(L-L) え の千渉を であると X5) 薄膜の よって 2x×- らの光が弱めあう条件は 図b dsin0=なので、 dが大 きいほうがsin@が小さく。 ゆえに0も小さな値となる。 ※A 別解 ガラス中におい (3) 厚さdのガラスを透過するときの光学距離は nd なので, ガラス内の往復 で生じる光路差は2nd-2dとなる。これが①式の!にあたる。 22※C= D て,波長は4になるので sin 0= よって sin0;=- よって 2x×2nd-2d_4xd(n-1) ※A← (図a),位相差の変化量は 4 N=1 のとき, 離れた波源の組合せで初めの弱めあいとなり, N=2 の D 中※D 2d 2ォー -21 ときも N=1 の場合のように, (4) M. と Ma が静止していたとき2つの光線はDで同位相であったことから, m(m=1, 2, 3, …) を用いて, ②式より 4z(L-L)。 Q.Q Q.9 離れた波源の組合せで初めの弱めあいと なった。一般に,スリットを2N(Nは大)等分した場合,N=1 の場合のよ n 4元d(n-1) =2xXm うに、号離れた波源原の組合せで初めの弱めあいとなるから#D* D 図のように、号離れた点. A6 一方、M,をだけHに近づけたとき, 2つの光線が初めて逆位相になった とすると, M,とHの間の距離は Lー41になっているので 4z(L-I-L)_4x(L:-La)_4x4 Qで光が弱めあうとすれば、 少し隣にずれたQ、で も同様に光が弱めあう。つま え よって sin,= D また、N=2 の場合のように, =2x×m-π 離れた波源の組合せで, 次の弱めあいとな| スリット内の号度れた点 るから sina- からの素元波どうしがすべて 弱めあう。 波長 入 以上2式より , 4元A ニ=x よって 4l=4 2入 よって sins== 図』 D 102 物理重要問題集 物理重要問題集 103 (5)新

回答募集中 回答数: 0
物理 高校生

(1)のグラフなのですが、ab間の変化度合いの方がcd間の変化度合いより大きい理由を教えて欲しいです。

A→B よって Eント 69 (気体の状態変化と熱効率〉 Q 「DV=ー定」はアソンの法則といい, 理想気体の状態方程式 「V=nRT」 よりpを消去すると, nRT - =ー定 と表せるがnとRが定数であることから, ポアソンの法則は「TV7-!=ー定」 とも表せる。 (2) 状態。 Pa V (1) a→b, c-dは かV'=一定, b→c, d→aは V=一定 であるので図a a のようになる。 A→B (2)断熱変化では熱を吸収, 放出しないので, 熱を吸収, 放出するのは定積変化 であるb→c, d→aとなる。 b→cについて, 定積変化なので, 気体は仕事をしない。気体が吸収した熱 量をQbc とおくと, 熱力学第一法則より Qbc=Cv(Tc-T.)+0※A← Te< To より Qbc <0 となるので放熱しており, その熱量は Cv(T,-T.) d→aについて, b→cのときと同様に, 気体が吸収した熱量をQaa とおく と,熱力学第一法則より Qan= Cv(Ta-T.)+0 T> Ta より Qan>0 となるので吸熱しており, その熱量は Cv(T.-Ta) (3)気体が仕事をしたのはa→bとc→d。 断熱変化なので, 気体がした仕事 をそれぞれ Wab, Wed とおくと熱力学第一法則 「Q=4U+WLた」 より a→b:0=Cv(T,-T.)+Wab c→d:0=Cv(Ta-T)+Wed よって W=Wab+ Wed=Cv(T.-T,+Tc-Ta) (4)「カV=一定」, 理想気体の状態方程式 「かV=nRT」より ルルの P, d B→C. 圧変化 0 B→C V。 V。 Vェ 2T 図a 合※A 単原子分子理想気体 の内部エネルギーの変化』 ゆえに は また,定 AU=nCy4T WLた よって したがっ nRT -V=一定 (4) C→Dほ D→Aは よって TV'-1=一定 V ゆえにa→b, c→dの断熱変化について a→b:T.V27-=T,V,"-! c→d:T.Vi7-1= T』V2"-1 Wした 令※B 気体が吸収した製 Qin, 放出した熱量 Qa, 気 がした仕事 Wの間には W=Qm-Qout が成りたち,熱効率eは よって レ V\ア-1 したがって, ①, ②式より (-)- Ta_Ta To T。 (5) A→B(定 D(定積変1 張)は熱量 (5)熱効率eは, 吸収した熱量に対する仕事の比なので, (2), (3)より Ta- To+ To-Ta_1- W e= Qa W To- T。※B← Ta-Ta e=- Qm を放出して Ta- Ta ここで0, 2式より と書けるので eミ 1Qcl Tュ-Teー) e=1- Qaa (T-T)V7-1=(Ta-Ta)V2"-! よって T-T。 =1-テ-T。 Ta- V-1 3 2 ゆえに e=1- としてもよい。 74 物理重要問題集 ()

解決済み 回答数: 1
物理 高校生

5番なのですが、答えのところを四角で囲ってあるように、加速度の向きが上向きなのが分かりません。単振動の加速度は常に振動の中心向きなのでは?と思いました。x軸方向に合わせているということでしょうか? どなたか解答よろしくお願いします🙇‍♂️

必開や54.くたてばねによる単振動〉 図1(a)は,ばね定数 k, 自然の長さLの軽いばね (質量は無視できるものとする)を鉛直に立てたとこ ろを示す。このばねに質量 mの薄い台を取りつけ, 台の上に質量Mの小さな物体を静かに置くと, 図1 (b) L に示すようにばねは自然の長さからdだけ縮んでつり あった。この位置をつりあいの位置とする。つりあい の位置から台を軽く押し下げて手をはなすと物体は台 に乗ったままで振動するが, 強く押し下げて手をはな すと物体は台から離れて鉛直上方に飛び出す。 ばねは鉛直方向のみに運動するとし, 重力加速度の大きさをgとして次の問いに答えよ。 (1)ばねの縮んだ長さdを求めよ。 (2) 図1(c)に示すように, つりあいの位置から手で台をsだけ押し下げた。 このとき手が台 を押している力の大きさ F。 をん, s, gのうち必要なものを用いて表せ。 つりあいの位置から手で台を押し下げた長さ sが十分に小さいとき手をはなすと, 物体と 台は一体となって振動する。 なお, x軸はつりあいの位置を原点とし, 鉛直上方を正にとる。 (3) つりあいの位置からの変位がxのとき, 物体と台にはたらく力Fを求めよ。 (4) このときの振動の周期Tを求めよ。 次に,押し下げた長さ sが十分に大きいとき, 物体は台から離れて鉛直上方に飛び出す。 物体が台から離れる変位を xo とすると, つりあいの位置からの変位xがxoに達するまで, 物体と台はともに加速度αで鉛直上方に運動する。 このとき,物体は台から垂直抗力Nを受け, その反作用とし て台は物体から-N の力を受けているとする。 (5)物体の運動方程式と台の運動方程式をそれぞれ求めよ。 (6)垂直抗力Nを m, M, d, x, g のうち必要なものを用いて表 せ。また,導き方も記入せよ。 (7) 垂直抗力Nを変位×の関数として, 図2にグラフを示せ。 ただし, s>d とする。 (8)物体が台から離れるときの変位 xoを求めよ。 (9)物体が台から離れるときの物体の速さ vo を求めよ。 また, 導き方も記入せよ。 ただし, m=M, s=2d とし, 答えはM, k, gのうち必要なものを用いて表せ。 ばね 物体 図1 図2 N 3Mg |2Mg Mg 0 S [広島大) 000。

未解決 回答数: 1