学年

教科

質問の種類

物理 高校生

どうして対象のOを取ろうとしたのか教えて欲しいです

迷 から、uk√(kは比例定数) とおける。 水深 9.0mの領域 における波の速さを [m/s] 浅瀬における波の速さを [m/s] 水深 9.0mの領域の水深をん(=9.0[m]), 浅瀬 01 より、 の水深を〔m〕 とすると, 屈折の法則 n12=- V2 h₁ 19.0 9.0 = V2 V h2 V h₂ ゆえに h= =3.0[m] 3 60° (4) 右図のように, hhhs の水深が海岸に近づくほど小さ くなる海底が続いているとすると,射線は矢印のように回り 込んでくる。 海岸に近いところでは水深が0mに近づくので, において 波の速さも0m/s に近づく。 屈折の法則 sin V2 20m/sと考えると, sinr→0, すなわち, 0°となる。 したがって, 屈折角は 0° に近づく。 これは, 波面が海岸線 と平行になることを意味する。 146 4個 (4) 深さ h3 ha h5 海岸 146) センサー34 指針 反射波を別の波源から出た波として、干渉条件を考える。 ● センサー35 センサー 36 [解説] 壁に関して Oと対称な点を O' とすると, 反射波は O' から 出たように見える。 壁での反射 で波の位相が変わらないので, 0.0' は同位相の波源と考えれ ばよい。 ここで, 波の干渉の平面図は, 81 10A 波源を結ぶ線分上にで きる定在波を拡張して 考える。 O'B=√(6入)+(8)=101 1.8 A より |O′B-OB|=|10入-8入|=2入 31- -37 m=2 m=0 面に達し との交点 2入=1×2m (m=2) 2 HB 発する素 える。 -38 と書けるので,Bは, 壁 から左向きに数えて2番 目の, 0から出た波とそ の反射波が強め合う線 線が通る。 また, 波源 0 0′ を結ぶ線分上 にできる定在波の節や腹の 位置をもとに,節線や腹線 の様子を描いて解く。その とき,m=01 2 … の どの条件にあてはまる節線, 腹線であるかを示しておく こと。 3 5 ---- 81 別解 線分OB上の点を Pとすると -31- 11 10'0-0|=6入 であり , -x2m (m = 6) 1/2× と書けるので,Oは6番 61=- 。 目の強め合う線が通る。 0 m=6543210 A したがって, OB間には5本の腹線が通る。 2本の腹線の間に節線が1本ずつあるので, 線分 OB上に波が 互いに弱め合う点は4個ある。 2≤ | OP-OP|≦6入 である。 波が弱め合う条件 から, 21≤(2m+1) ≤61 を満たす整数の個数を 求めてもよい。 波の反射では,反射面 について波源の対称点を考 えるとよい。 油の +9

回答募集中 回答数: 0
物理 高校生

有効数字で質問なんですけど2.0×150の答えってどうなりますか?掛け算の場合最も桁数の少ない数字に合わせるとあるので3桁の数字をどうしたら良いかわからなくて、お願いします!

① 測定値の計算と有効数字 日本の た。こうして得た数字の 3, 5, ゆ た意味のある数字なので、これらを 有効数字 けたすう たこの例で,「有効数字の桁数は3桁である」という。有 せいみつ 効数字の桁数の多いものほど、精密に測定したことになる。 いまこの質量357g をkg の単位で表すと 0.357kg となる。 このとき, 0.357kg くらい 0位どりの0 なので、 有効数字の桁数には数えない。 したがって, 357gも0.357kg もどちらも有効数字は3桁である。 p.280 な重 がある。 5 太陽と 測定値には必ず誤差が含まれる。 測定値どうしの計算では, 有効数字を適切に扱 10 うために,次のような点を考慮しなければならない。 ■かけ算、わり算 しゃごにゅう 桁数 (四捨五入した後) とする。 測定値どうしをかけたりわったりするときは,通常, 最も少ない有効数字の 10 約 1 電子の 約 しかし ときに の0を ■指数 15 例えば 15 :縦 26.8cm, 横 3.2cmの長方形の面積 26.8cm×3.2cm=85.76cm² 答え 86cm² 3桁 2桁 2桁 (1) であ ■足し算、引き算 五入によって測定値の末位が最も高い位のものに合わせる。 た 例:21.58cm の棒と8.6cm の棒を継ぎ足した長さ 21.58cm + 8.6cm = 30.18cm 小数第2位 小数第 ■整数や無理数の扱い 整数や無理数は測定値ではな 答え 30.2cm 小数第1位 測定値どうしを足したり引いたりするときには,通常, 計算した結果を四捨 1 20 負の 20 NJ 10 25

回答募集中 回答数: 0
物理 高校生

青い所で物理では分数はダメなのでしょうか?解説お願いします🙇‍♂️

チェック問題1 等加速度運動の「3点セット」 第5分 次の等加速度運動の 「3点セット」 初期位置 x, 初速度 Vo, 加速度αを表にせよ。 さらに, 時刻 t での速度vと座標を, tを使って表せ。 (1) (2) t=0s 4m/s2 3m/s t=0s 10m/s t=2s 4m/s 軸 軸 x〔m〕 x(m) 2m 0m Step 3 初期位置 Xo 0m 初速度 ひ 10m/s 加速度 α -3m/s2 [公式] より v=10+(-3)t=10-3 t...... 答 [公式]より 2 1 x=0+10t+m×(-3)t2 =10t-1.5t2...... 答 は座標だよ! 移動距離じゃな いからね。 解 説 (1) 《等加速度運動の解法〉 (p.21)で解く。 Step 1 軸はすでに立っている。 (2) Step 2 与えられた図より, 「3点セット」 の表は, 初期位置 Co 2m 初速度 ひ 3m/s 加速度α 4m/s2 Step 3 [公式] (p.17) より, v=3+4t・・・・・・答 [公式] (p.18) より x=2+3t+1/2 x4t2 =2+3t+2t2. 箸 は座標だよ! 移動距離じゃな いからね。 さあ、次の問題で等加速度運動の総まとめをしよう。 Step 1 軸はすでに立っている。 Step2 加速度だけ不明なので, 求める必要がある。 加速度αとは, 1秒あたりの速度の変化なので. (4-10) m/s変化 a= 2秒間で -=-3m/s2 つまり,αは負で減速運動となっている。 以上より, 「3点セット」の表は, いつも座標を意識 している人は物理 が得意になれるよ 22 物理基礎の力学 第2章 等加速度運動 23

解決済み 回答数: 1
物理 高校生

mをどうやって求めているのか全くわかりません💦 教えてくださいお願いします🙇

339クインケ管による実験 図のような, 入り 口Sから音を入れ, 左右2つの経路 (SAT と SBT) を通った音を干渉させ、出口Tでその干渉音を聞く 装置がある。 はじめ, 左右の経路の長さは等しく ができる。 S A) B なっている。 この状態からBをゆっくり引き出して出音 いったところ,Tで聞く音が次第に小さくなり T 0.17m 引き出したところではじめて最小となった。 音の速さを3.4×102m/s とする。 (1) 音の波長と振動数はいくらか。 (2)定性 音の振動数はそのままで室温を上げて同様の実験をすると, 音がはじめて 最小になるまでにBを引き出す距離は, 長くなる・短くなる・変わらないのどれか。 ヒント (1) Bl〔m〕 だけ引き出す ⇒ 経路差は21〔m〕 (2) 音の速さが大きくなる。 1,2 6.4×10 Hz 340 音の干渉図のように, スピーカー A, B から同じ振動数の音を出す。 A, B から等距離にあ る点0で音の強さは極大であり,点から直線AB に平行に移動すると,音の強さは次第に小さくなっ てから大きくなり, 点Pで再び極大になった。 「聞く T CA 2.5m OS-01X04.8 2.5m P 2.5 -12.0 m- B (1) スピーカー A, B が出す音は, 同位相か逆位相か。 BC ISOXONE (08-)-01x04.E (2) スピーカーが発する音の波長はいくらか。 aa 6.8×10 Hz ➡2 ヒント (2)点Pで音の強さが極大となるので,|AP-BP|は波長の整数倍である。

解決済み 回答数: 1