学年

教科

質問の種類

物理 高校生

(シ)で直列(問題の図4)と並列(問題の図5)の時のコンデンサーに蓄えるエネルギーを比較しているのですが(シ)の解説で0<ω^2LC<2の時とあるのですがどうしてこの範囲になるのか分かりません。 ω^2LCが2より大きい値を取った時は考えないのでしょうか? 出典:難問題の... 続きを読む

Chapter 1 電磁気 Section 4 交流と荷電粒子の運動 192 例題 35 交流回路② 以下の空欄(ア)~(シ)にあてはまる式または語句を解答用紙の該当す る欄に記入せよ。 また, 空欄(a), (b)にあてはまる答えを図3から選び、 その番号を解答用紙の該当する欄に記入せよ。 る。したがって、同じ電圧振幅 V を発生する交流電源に接続するとき, コンデンサーが蓄えるエネルギーの最大値は直列接続の場合( [J] であり, 並列接続の場合(ク) 〔J〕 である。 また, コイルが蓄え るエネルギーの最大値は、 直列接続の場合は) [J] であり,並列 接続の場合は) [J] である。 並列接続の場合, コンデンサーが蓄 えるエネルギーの最大値とコイルが蓄えるエネルギーの最大値が等 しくなるのはω=)〔rad/s〕のときである。 コンデンサーから放射される電磁波の強さは, コンデンサーが蓄積 するエネルギーに比例するとしよう。 交流電圧源の電圧振幅 Vo を一 として、交流電圧の角振動数を変えて電磁波の放射エネルギーを大 きくしようとするとき, コイルとコンデンサーの直列接続と並列接続 とを比較するとシン) 接続のほうがより強く電磁波を放射すると考 えられる。 図1に示すように, 電気容量がC〔F〕] のコンデンサーを角振動数ω [ rad/s ] の交流電圧を発生する電圧源に接続する。 回路には時間を [s] として,図2に示すようなIo cos wt 〔A〕 の交流電流が図1の矢印の 向きを正として流れる。 t=0s でコンデンサーの電圧は0Vで,コンテ ンサーの蓄える電荷はOCであった。 交流電流が流れることによって 時刻に図1のコンデンサー上側の極板が蓄える電荷は) [C]で あり、コンデンサー両端の電圧は() [V] である。この交流電圧 はコンデンサーの極板間に,時間的に変動する電界を作る。 変動する電界付近には, 変動する磁界が発生する。 図2の0<t< / 200の間では,コンデンサーの極板間の電界の向きは図3の(a) の向きである。この向きの電界の時間変化率は0<t < π/20 の間で正 であり、この間に変動する電界は、コンデンサーの上側極板に流れ込 む電流が,そのままコンデンサーの極板間を流れるものと考えた場合 に発生する磁界と,同じ向きに磁界を発生する。 したがって,0<t <π/20の間にコンデンサー周囲に発生する磁界は図3(b)の向 きである。 この磁界の周りには、変動する電界がさらに発生する。 こ うして、コンデンサーの周りには、次々と変動する磁界と電界が発生 し、周りの空間に伝えられる。 これが電磁波である。 光の速さをc[m/ s] とすると,このコンデンサーから放射された電磁波の波長は(ウ) [m〕 と計算される。 コンデンサーから電磁波を発生させるとき, コンデンサーとコイル を接続した回路がよく用いられる。 電気容量C [F] のコンデンサーと 自己インダクタンスL [H] のコイルを,図4のように直列接続する場 合と,図5のように並列接続する場合を比較しよう。図4の直列回路 I cos at 〔A〕 の交流電流が流れるとき, 電圧源が発生する電圧の振 幅は国〔V〕である。 一方, 図5の並列回路のコイルとコンデンサー Vosin at 〔V〕 の電圧を加える場合には, コンデンサーに流れる電流 の振幅は(オ) [A], コイルに流れる電流の振幅はカ) [A] であ 図 1 考え方の キホン 電流 415 図4 電流 [A] Io 0 -10 2ω ② 3 w2w 図2 図5 2x 時間 t(s) コンデンサー -0 電流 図3 (同志社大) 交流で電圧や電流を求める場合、 普通は,振幅(最大値) と位相を 別々に処理すればよい。 振幅はオームの法則から求め、位相はπ/2 だけ進むとか遅れるとかを判断し, cot+π/2とかwt-π/2とかとすればよい。ただ この問題では、設問の順序からみて、 微分や積分を用いて解答するのが、出題者 の意図であろう。 1-4 交流と荷電粒子の運動 電磁気 193

解決済み 回答数: 1
物理 高校生

全てが分かりません。公式にこんなの存在しないし、何に当てはめてんのか意味がわかりません。どうしたらこの回答になるのか教えてください。どなたか心優しい方教えてください。

物体をx軸の正の向きに引き,ある位置で物体を静かにはなすと, 物体は動き始め, 時間がれだけ経過したとき速度が初めて0になった。 この間, 物体の位置がこのとき、 物体にはたらく力の水平成分 F はいくらか。 2) (1) のとき, はいくらか (ust) 20 148 重まった2物体の単振動 図のように、ばね定 kのぼれのつながった質量Mの平らな台がなめら かな水学童上にあり、台の上には質量mの物体が置 かれているばねの他端は壁に固定されており,台を 水平に携載 伸びたところで台を静かにはなしたところ, 物体は台の上ですべることなく,台と一体 となって 1) この振動の周期を求めよ。 台 小物体 ばね k M 1000 m 台を水平に引っ張り, ばねが自然の長さからdだけ せることができる。 重力加速度の大きさをgとする。 した。台と物体の間の静止摩擦係数をμ, (2) 水平面に対する台の速さの最大値を求めよ。 (3) 振動中にばねの伸びがd となった瞬間の、物体にはたらく摩擦力の大きさを求めよ。 4) 振動中に小物体が台の上ですべらないためのdの最大値を求めよ。 10 149 初期位相がある単振動なめらかな水平面上に 質量mの小球を置いてばね定数んの軽いばねの一端 を接続し、ばねの他端を壁に固定する。 ばねが自然の 長さのときの小球の位置を原点として、図の右向 きに軸をとる。 速度の正の向きは、x軸の正の向きとする。 (1) 時刻 t=0 に, 原点Oにある小球に初速度(v>0) を与えたところ,小球は単振動 を行った。 単振動の振幅Aをkm, v を用いて表せ。 2) (1) のとき、小球の単振動の角振動数をとして,時刻における小球の座標xをA, wtを用いて表せ。 (3) 小球を一度静止させて r=A の位置まで移動し、静かにはなすと小球は角振動数ω の単振動を行った。 小球をはなした時刻を t=0 として、時刻における小球の座標 を A, wt を用いて表せ。 4③3)の大き、小球が原点を通過するときの速さを Vとする。時刻における小球の 速度をV, w, tを用いて表せ。 Aはかんけいないから下線 自然の長さ 2000000000 ○ 10 単振動

解決済み 回答数: 2