学年

教科

質問の種類

物理 高校生

解説は載っていますが、(1)でなぜ 1/2×9.8×0.020^2=0.010×⒐8×h という式になるのかよくわかりません。 1/2×k×x^2 と m×g×h が等しいということですか? この式で左辺と右辺がなぜイコールなのか教えてください。🙏

基本例題19 弾性力による運動 なめらかな水平面 AB と曲面 BC が続いてい る。Aにばね定数 9.8N/m のばねをつけ, その他 端に質量 0.010kgの小球を置き, 0.020m 縮めて はなす。 重力加速度の大きさを9.8m/s2 とする。 www B 基本問題 138. 146 C 0.40m (1) 小球は, ばねが自然の長さのときにばねからはなれる。 その後, 小球は,水平面 ABから何mの高さまで上がるか。 (2) 水平面 AB からCまでの高さは0.40m である。 ばねを0.10m縮めてはなすと, 小 球はCから飛び出した。 このときの小球の速さはいくらか。 指針 垂直抗力は常に移動の向きと垂直で あり仕事をしない。 小球は弾性力と重力のみから 仕事をされ, その力学的エネルギーは保存される。 (1)では, ばねを縮めたときの点と曲面上の最高点, (2)では, ばねを縮めたときの点と点Cとで,それ ぞれ力学的エネルギー保存の法則の式を立てる。 ■解説 (1) 重力による位置エネルギーの 高さの基準を水平面 AB とすると, ばねを縮め たときの点で,小球の力学的エネルギーは, 弾 性力による位置エネルギーのみである。 曲面 BC上の最高点で、速さは0であり,力学的エネ ルギーは重力による位置エネルギーのみである。 最高点の高さをん 〔m〕 とすると, x9.8×0.0202=0.010×9.8×h h=2.0×10m (2) 飛び出す速さを [m/s] とすると,点Cにお いて,小球の力学的エネルギーは,運動エネル ギーと重力による位置エネルギーの和であり、 2 ×9.8×0.10 x0.010×2 +0.010×9.8×0.40 v2=1.96=1.42 v=1.4m/s

解決済み 回答数: 2
物理 高校生

問題には直接関係ないのですが、B→Cの反応が等温変化なのにグラフが直線なのはなぜですか? 等温変化のときは曲線だと覚えていたので違和感があります...

262 ここがポイント 理想気体の状態方程式は、気体の圧力を、体積をV,物質量をn, 気体定数を R, 絶対温度をTと すればV=nRT である。 特に,単原子分子であれば、その気体の内部エネルギーは U=12nRT=123Dで与えられる。 解答 (1) グラフより pv=pc なので, pc を求めればよい。B→Cは等温変化で あるから, ボイルの法則を B, Cに適用して pcx(10×10-2)=(2.0×105)×(5.0×10-2) pc=pv=1.0×10 Pa また,状態方程式を用いて PDVD 1XRTD よって TD=PDVD R (1.0×10)×(2.5×10-2) (W 8.3 3.0×10²K)--W+0= TЯ-40 (2)状態Aの温度を TA とすると 3 AUDA = 1/2× -×1.0×R(TA-Tb) 状態方程式を用いて DAVA TA=- 1.0×R' VA=VD であるから = PDVD Tb=- 1.0×R AUDA-RTA-TH =R (DA― DD) × VA R 01+0=ULT PA-VA-PPT - VALPA-PD) 100XRTLST YoxR = 12 ((2.0×10)-(1.0×10×25×10の人 = 3.75×10°≒3.8×103J 東日 直頰 (3) 右図 V(X10-2m³) ボイル・シャルルの法則を用いて, 状 態 A, B, C の温度 TA, TB, Tc を求 める。 10 7.5 (1)より,T= 3.0×102K であるから T=2Tn=6.0×102K 5.0 B D 2.5 T=Tc=2T=4Tb=12×102K A→B, C→Dは定圧変化であるか ら, シャルルの法則が成りたち, Vと 0 3.0 6.0 9.0 12 Tは比例関係となるので, グラフは原点に向かう直線となる。 T(X10²K) FUL

解決済み 回答数: 1
物理 高校生

物理基礎の運動の法則の問題です。85の(2)で、加速度が下向きに変化したので、重力、張力の力の他に下向きの力が働く気がするんですけどなぜ働かないのですか。教えていただけると嬉しいです。

重力, そ ってい 重 (2)加速度 1.2m/s2 の等加速度直線運動を 7.0s 間続けているので, 減速し始める直前の速度v は,公式「v=vo+αt」から, ■解説 (1) 糸の張力の大きさをTとすると,図1 物体が受ける力は図1のように示される。鉛直 上向きを正とすると, 運動方程式 「ma=F」は, 5.0×1.2=T-5.0×9.8 T=55 N ,物 (2)物 力である。物体は,力の大きい左向きに運動すると考えられる。左向 きを正として加速度を α 〔m/s2〕 とする。 運動方向の力の成分の和は, 6.0 4.5=1.5N となるので, 運動方程式 「ma=F」は, 3.0xa=1.5 a=0.50m/s2 左向きに 0.50m/s2 85.物体の上げ下ろし (1) 55 N (2) 35 N 02- 物体が受けている力は,重力と糸の張力である。正の向きを定 めて、運動方向の力の成分の和を求め, 運動方程式を立てる。 (2) 速度 の変化から加速度を求め, 運動方程式を用いて計算する。 2.5N 「 正の向き 大きさは は、エレー が大き 6.0N 4.5N 平 が静止 ① 方向 。 物 各問 T〔N〕 1.2m/s2 運動方向の力の成分の 和は, T-5.0×9.8 〔N〕 である。 出すた 介 えよ。 5.0×9.8N 図2 T'〔N〕 2.8m/s2 るが, v=0+1.2×7.0=8.4m/s ↓ 静止するまでに減速した時間は 3.0sなので, 5.0×9.8N その間の加速度αは, a= 0-8.4 3.0 == -2.8m/s2 糸の張力の大きさを T' とし,鉛直上向きを正とすると(図2),運動 運動方程式を立てる際 の正の向きは,初速度の 向きにとることが多い。 また, 上向きの張力を加 えていても、重力よりも 小さいとき,加速度は下 向きとなる。 8.0kg する 張力の 53 53 50と 止し 物体か

解決済み 回答数: 1
物理 高校生

物理のエッセンスの力学の問題について質問です。 (2)の運動量保存の式ではmv+MV=mv0とされていますが、衝突後のMの速度は最終的に0になると言う認識でいいのでしょうか?? また、もしそうならば滑らかな床であるのにも関わらず速度を持った物体が静止する理由を教えて頂きたい... 続きを読む

①+M×② (m+M)v'= (m-M) ひ1+2Mv2 V₁ = (m-M)v₁+2Mv2 m+M ①mx② 11/12M2=1/2x2 力学 17 M . x=V √ k 3mvo M 2(m+M)V k ちなみに v= 2m-M 2(m+M) v < 0 となる (M+m)v2′'=2mv+(M-m)vz V₂ = 2mv,+(M-m)v₂ m+M 問題の図では, はじめのP,Qの速度 が右向きに描かれているが, どんなケー スであれ,この結果は通用する。 M=mのときは,U1'02,02′'=v とな って、速度の入れ替わりが起こる。 ただ, 「等質量」で「弾性衝突」 という二重の条 件が必要であることを忘れないように。 78 (1)e=0 は完全非弾性衝突ともよ ばれ, 衝突後の速度差が0, つまり一体 化する(ひっつく) ケースである。 衝突直 後の両者の速度をとすると mv=m+M)より v= m m+M -Vo このときの運動エネルギーがばねの弾性 エネルギーに変わっていくから (m+M) v² = 1½ ½ kx² m+M mvo .. x=0 からは左へはね返っている。 79 M v m V +0000000 れきぜん 速さをv, Vとする。 (速度にしない のは向きが歴然としているため) 運動量保存則は mv=MV ... ① 力学的エネルギー保存則は ......② 11/21k=1/2m+1/2 MV22 ①のVを②へ代入し m2v2 |\ {kl²=\/\mv²+ 2M =1/2m0(1+77) M kM v=l m(m+M) k √k(m+M) 衝突の直前・直後を力学的エネルギー 保存で結ぶことはできないが, 衝突後は みきわ 成り立つという見極めが大切。 (2) 衝突後のm, Mの速度を v, Vとす る。 mv+MV=mvo v-V=-(0-0) ①mx② より 3m この場合,「物体系はどれとどれ?」 と尋ねると,「P と Q」 という答えが圧倒 的だ。 それでは, ばねの力が外力として 働いてしまう。 それでも, ばねの力はP Q に対して, 逆向きで同じ大きさな ので,外力の和が0ということでセーフ なのだが, 「P と Q とばね」 を物体系と とらえるとよい。 ばねの力は内力 (グル ープを構成するメンバー間の力)となっ て気にならないし, ばねには質量がない ので,運動量は常に0 で, 保存則の式に 顔を出してこない。 80 V=- 2(m+M) -Vo 今度は板だけがばねを縮めていくので 最も高い位置にきたかどうかは,台 上の人に判断させればよい。 その人が見 てPの速度が0になったときにあたる。

解決済み 回答数: 1
物理 高校生

3枚目の写真の緑のマーカーで囲った※Bの部分の言っていることが分からないので教えてほしいです。

64.〈ピストンで封じられた気体分子の運動〉 なめらかに動くピストンがついた容器内に質量mの単原子分子 からなる理想気体が封入されている。 ピストンおよび容器は断熱材 でできている。図に示すように x, y, z軸をとり, 容器の断面積は 一様であるとする。 次の問いに答えよ。 〔A〕 まず,ピストンが固定されており, ピストンの底部は容器の 底からんの距離にある場合を考える。 (1)容器内のある1個の気体分子を考え,そのz軸方向の速さを ひとする。分子がピストンに弾性衝突したときピストンが受 ける力積の大きさを求めよ。 (2) (1)において1個の分子がある時間 4t にピストンに衝突する回数を答えよ。 (3)(2)においてN個の分子によって 4tの間にピストンが受ける平均の力の大きさを答 えよ。ただし,気体分子全体のvzの2乗の平均 22 を用いよ。 〔B〕 次に,ピストンをz軸の負の向きにより十分に小さい一定の速さで押しこんだ 場合を考える。なお理想気体では, 内部エネルギーは各気体分子の運動エネルギーの総和 となる。 z軸方向の速さvz の1個の分子がピストンに弾性衝突した後の軸方向の分子の速さ vz を求めよ。 また,衝突前後の分子の運動エネルギーの変化量⊿u を答えよ。この際, 1± b b は十分小さいことより (10) = 0 という近似が成りたつことを用いよ。 Vz Vz Vz Vz (54)において⊿t の間のN個の分子の運動エネルギー変化の合計 4U を v22 を用いて答 えよ。 ただし, 4t の間のピストンの移動距離はんに比べて十分小さいものとする。 〔A〕のときの容器の体積を V,気体の温度を T, 内部エネルギーをひとおく。また, 4tの間の体積の変化を⊿V, 温度の変化を⊿T とする。 気体分子全体の速さ”の2乗 44 が成りたつこと の平均をとしたときが成りたつこと,また, U を用いて 4 を 4T, T を用いて表せ。 AV V 記 (7/3)で求めたを用いて、4tの間に気体がピストンにされた仕事⊿W を答えよ。 また, この結果を(5) と比較して,気体を断熱圧縮したとき,気体がされた仕事と運動エネルギ ーの関係について説明せよ。 [23 埼玉大改]

解決済み 回答数: 1