物理
高校生
解決済み

物理のエッセンスの力学の問題について質問です。
(2)の運動量保存の式ではmv+MV=mv0とされていますが、衝突後のMの速度は最終的に0になると言う認識でいいのでしょうか??
また、もしそうならば滑らかな床であるのにも関わらず速度を持った物体が静止する理由を教えて頂きたいです。

①+M×② (m+M)v'= (m-M) ひ1+2Mv2 V₁ = (m-M)v₁+2Mv2 m+M ①mx② 11/12M2=1/2x2 力学 17 M . x=V √ k 3mvo M 2(m+M)V k ちなみに v= 2m-M 2(m+M) v < 0 となる (M+m)v2′'=2mv+(M-m)vz V₂ = 2mv,+(M-m)v₂ m+M 問題の図では, はじめのP,Qの速度 が右向きに描かれているが, どんなケー スであれ,この結果は通用する。 M=mのときは,U1'02,02′'=v とな って、速度の入れ替わりが起こる。 ただ, 「等質量」で「弾性衝突」 という二重の条 件が必要であることを忘れないように。 78 (1)e=0 は完全非弾性衝突ともよ ばれ, 衝突後の速度差が0, つまり一体 化する(ひっつく) ケースである。 衝突直 後の両者の速度をとすると mv=m+M)より v= m m+M -Vo このときの運動エネルギーがばねの弾性 エネルギーに変わっていくから (m+M) v² = 1½ ½ kx² m+M mvo .. x=0 からは左へはね返っている。 79 M v m V +0000000 れきぜん 速さをv, Vとする。 (速度にしない のは向きが歴然としているため) 運動量保存則は mv=MV ... ① 力学的エネルギー保存則は ......② 11/21k=1/2m+1/2 MV22 ①のVを②へ代入し m2v2 |\ {kl²=\/\mv²+ 2M =1/2m0(1+77) M kM v=l m(m+M) k √k(m+M) 衝突の直前・直後を力学的エネルギー 保存で結ぶことはできないが, 衝突後は みきわ 成り立つという見極めが大切。 (2) 衝突後のm, Mの速度を v, Vとす る。 mv+MV=mvo v-V=-(0-0) ①mx② より 3m この場合,「物体系はどれとどれ?」 と尋ねると,「P と Q」 という答えが圧倒 的だ。 それでは, ばねの力が外力として 働いてしまう。 それでも, ばねの力はP Q に対して, 逆向きで同じ大きさな ので,外力の和が0ということでセーフ なのだが, 「P と Q とばね」 を物体系と とらえるとよい。 ばねの力は内力 (グル ープを構成するメンバー間の力)となっ て気にならないし, ばねには質量がない ので,運動量は常に0 で, 保存則の式に 顔を出してこない。 80 V=- 2(m+M) -Vo 今度は板だけがばねを縮めていくので 最も高い位置にきたかどうかは,台 上の人に判断させればよい。 その人が見 てPの速度が0になったときにあたる。
78* なめらかな床上に,質量Mの板が, ばね定数k のばねで結ばれて置かれている。質量m ( <M/2) Mk の物体が速さで板に当たるとき, ばねの縮みの 最大値はいくらか。 衝突は瞬間的とする。 m Vo (1)e=0 (2)e=1212 の場合について求めよ。

回答

✨ ベストアンサー ✨

答えは左辺が衝突後で右辺が衝突前で書かれています。
衝突前Mは止まっているので、M×0=0です。

ぬーのめん

その通りでした。
申し訳ないです!

この回答にコメントする
疑問は解決しましたか?