学年

教科

質問の種類

物理 高校生

東工大物理の過去問で質問です 電磁気の問題(d)ですが、加える外力が−になる理由を知りたいです

44 平行板コンデンサーにおける振動 面積Sの同じ形状を持つ導体極板AとBが間隔dで向かい合わせに配置された平 行板コンデンサーを, 真空中に置く。 このコンデンサーの極板間に、導体極板と同じ 形状を持つ面積Sの金属板Pを, 極板Aから距離を隔てて極板に対して平行に置 く。 真空の誘電率をE0として以下の問に答えよ。 ただし, 極板端面および金属板端 面における電場の乱れはなく, 電気力線は極板間に限られるものとする。 導線, 極板, 金属板の抵抗,重力は無視する。 また金属板の厚さも無視する。 A [A] 図1のように,極板AとBは, スイッチ SW を介して接続され,極板Aは接 地されている。 L x d 1 コンデンサー 317 P SW (2012年度 第2問) B 図 1 (a) スイッチ SW が開いている時, 極板A, B間の電気容量を求めよ。 團 (b) スイッチ SW を閉じた後, 金属板Pを電気量Qの正電荷で帯電させる。 こ の電荷によって極板AとBに誘導される電気量を,それぞれ求めよ。 (c) 問(b)において, コンデンサーに蓄えられている静電エネルギーを求めよ。 團 (d) 問 (b)の状態から, 金属板Pを電気量Qの正電荷で帯電させたまま, 金属板 の位置をxからx+4xまで微小変位させる。 この変位による, コンデンサー に蓄えられている静電エネルギーの変化量を求めよ。 ただし, x, d に比べて |4x|は十分小さく. (△x) は無視できるものとする。 微小変位によりエネルギ ーが変化するということは, 金属板Pは力を受 ることを意味する。 微小 変位の間は金属板Pにはたらく力の大きさは一定であるとみなして, この力を 求めよ。ただし、極板AからBに向かう向きを力の正の向きとする。

回答募集中 回答数: 0
物理 高校生

黄色でマーカー引いたところがどうして2πx/16となるのか分からないです。教えてください🙇‍♀️

入 =2.0mである。 波の速さをv[m/s」として、 発展例題 30 正弦波の式物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s 0.100 であった。 実線の状態を時刻 t=0s とする。 (1) 波の伝わる速さ, 周期, 振動数を求めよ。 (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y〔m〕 , 時刻t [s] を用いて表せ。 指針 正弦波の波形や, 単振動をする媒質 の変位は,いずれも sinを用いた式で表される。 それぞれの式は、波の波長や周期, 振動のようす をもとにして考えることができる。 解説 (1) 波は 0.10s間に2.0m進んで 2.0 0.10 おり, 速さは, v=· 図から, 波長 = 16m なので,周期Tは, T= 入_16 V 20 = 0.80s =20m/s 振動数fは, f= =1.25 1.3Hz T 0.80 (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2異なり, t=0の とき x=0の媒質の変位はy=0 なので, 位置 2 1 CATO -1 -2 y〔m〕 10 発展問題 356 進む向き 20 088 x(m) NEOT 126 W= 2π 77" xでの位相 (sin の角度部分)は、2016=7 8 と表される。 また, x=0 から x>0 に向かって まず波の山ができており、波の振幅が2.0mな ので,求める波形の式は, y=2.0 sin- DIVER A (3) 媒質の振動では1周期 (T= 0.80s) 経過する ( と位相が2進み, x=0の媒質の変位は,図か ら,t=0のときにy=0 なので、時刻t におけ る位相 (sin の角度部分) は, 2π- t =2.5t と (部分)は,270.80 表される。 また, x=0の媒質は, t = 0 から微 小時間後に負の向きに動くので、求める変位y の式は, y=-2.0sin 2.5t TIC 199 TX 8

回答募集中 回答数: 0
物理 高校生

物理の正弦波の問題です。 黄色のマーカー引いたところの導き方を教えてください!🙏

発展例題 30 正弦波の式 物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s であった。 実線の状態を時刻 t=0s とする。 -1 (1) 波の伝わる速さ, 周期, 振動数を求めよ。 -2 V (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y [m] を, 時刻 t[s] を用いて表せ。 指針 正弦波の波形や, 単振動をする媒質 の変位は,いずれも sin を用いた式で表される。 それぞれの式は、波の波長や周期, 振動のようす をもとにして考えることができる。 解説 (1) 波は 0.10s間に2.0m進んで 2.0 0.10 図から, 波長 入=16mなので, 周期Tは, T=^_16 V 20 おり, 速さは, ひ= = 0.80s =20m/s 振動数fは. T 0.80 (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2ヶ異なり、 t=0の とき, x=0の媒質の変位はy=0 なので,位置 = -=1.25 1.3Hz ↑y〔m〕 2 1 10 ■発展問題 356 進む向き A 20 x[m〕 TEORIA x での位相 (sin の角度部分)は、2= TX 8 と表される。また, x = 0 から x>0 に向かって まず波の山ができており, 波の振幅が 2.0m な TX ので,求める波形の式は、 y=2.0sin- VARO 8 (3) 媒質の振動では1周期 (T= 0.80s) 経過する と位相が2ヶ進み, x=0 の媒質の変位は,図か ら, t=0のときに y = 0 なので、 時刻 t におけ る位相 (sin の角度部分) は, 2πー MER 表される。また, x=0の媒質は、 t=0 から微 小時間後に負の向きに動くので 求める 変位y の式は, y=-2.0sin2.5tt = 2.5t と 20.80 490

回答募集中 回答数: 0
物理 高校生

オのところで-k(x-x1)が成り立つ時単振動の中心がx1であるのかを教えてほしいです

" 85 ゴムひもによる小球の運動■ 次の文中の を埋めよ。 図のように、屋根の端に質量の無視できるゴムひもで小球をつな いだ。 小球を屋根の位置まで持ち上げてから 落下させたときの運 動を考える。 ゴムひもの自然の長さはL, 小球の質量はmである。 図のように鉛直方向下向きにx軸をとり, 屋根の位置を原点とする。 使用するゴムひもは, 小球の位置xが x≦L のとき, ゆるんだ状態 となり小球に力を及ぼさない。 一方, x > L のとき, ゴムひもは伸 びて張力がはたらき ばね定数kのばねとみなせる。 小球は鉛直方向にのみ運動し, 地 面への衝突はないものとする。重力加速度の大きさをgとする。 小球を屋根の位置(x=0) から静かにはなして落下させた。 x=Lの位置での小球の 速さはアである。 小球にはたらく張力の大きさが重力の大きさと等しい瞬間の位 置を x1 とすると, x1=イである。x=xでの小球の速さは,v=ウであ る。さらに小球は下降し、 最下点に到達した後, 上昇した。 最下点の位置をxとすると X2=エである。 また, 最初に x1 を小球が通過してから最下点を経て、再び x にも [18 明治大] 77,78 である 日 屋根 + -0 x

回答募集中 回答数: 0
物理 高校生

⑶についてです。黒く書いたように6m延長させるのはなぜ間違ってるのですか?なぜ上下逆転するのですか?

170 W章 波動 基本例題44 横波の伝わり方 図は,x軸上に張られたひもの1点Oがy[m〕 単振動を始めて, 0.40s 後の波形である。 0.20 (1) 振幅, 波長, 振動数, 波の速さはそれ ぞれいくらか。 (2) 図の0,a,b,cの媒質の速度の向 きはどちらか。 速さが0の場合は 「速さ」と答えよ。 両 (3) 図の時刻から. 0.20s後の波形を図中に示せ。 指針 (1) 周期は、波が1波長の距離を 進む時間から 0.40s である。 振幅, 波長をグラ フから読み取り, 振動数, 波の速さを求める。 6 (2) 横波では, 媒質の振動方向は波の進む向き に垂直であり、媒質はy方向に振動している。 (3) 波は1周期の間に1波長の距離を進む。 解説 (1) グラフから読み取る。 振幅 : A = 0.20m, 波長 : 入=4.0m 振動数, 波の速さは, 振動数:= 1/72= 波の速さ : v=fd = 2.5×4.0=10m/s (2) aとcは振動の端なので速さが0である。 Oとbの向きは,微小時間後の波形を描いて調 べる。 0: 上,b:下,aとc: 速さ 0 ST 1 0.40 =2.5 Hz I 08.0 0 JA 20 -0.20 a y[m〕↑ 0.20 0 y[m] 0.20 C HA wazlo -0.20 基本問題 334, 335,336 Say 6 7 FAX 3 微小時間後 I 52 8 HOTO 4 5 6 7 8 x[m] 133-0.20 a (3) 周期が 0.40sなので, 0.20s 間で波は図の状 R 態から半波長分を進む。 x (m) I に ** XX I I 6 7 8 x〔m〕 0 [Point 媒質の速度の向きを調べるには, 微 小時間後の波形を描くとよい。 SHU

回答募集中 回答数: 0
物理 高校生

(5)の単振動、最大の速さについての質問です!解説は理解出来てますが、2枚目にあるように単振動の位置エネルギーで表せないのはなぜですか?

114 力学 38 単振動 水平面内において一定の角速度ので 回転している円板がある。 円板上には, 半径方向にみぞが掘られており、その中 にばね定数k,自然長のばねが置かれ ている。 ばねの一端は中心0に固定され, 他端には質量Mの小球Pがつけられてい る。 Pはみぞの中を滑らかに動け, 0 か つ らPまでの距離rを用いておもりの位置を表す。 いま、円板上で静止 している観測者Aには, Por=ro の点に静止して見えた。 真上から見た図 Level (1), (2)★ (3)~(5)★ Point & Hint W (1) ro をlk, M, ω を用いて表せ。 (2) こうなるために必要な角速度に対する条件を表せ。 次に,Pをみぞに沿って外側に動かし, 点0 からの距離 n の点で静 かにPを放したところ, P はみぞの中で運動を始めた。 (3) Pが位置にあるときAが見る加速度をaとすると, A が書くべ き運動方程式はどのようになるか。 みぞ方向外向きを正とする。 (4) Pの位置を,rの代わりに ro から測ってx=r-ro を用いて表 すと, 運動方程式の右辺の力はLx の形になる。 Lをk, M, ω を 用いて表せ。 (5) Pを放してからばねの長さが最小となるまでの時間, ばねの長さ の最小値,およびAが見るPの最大の速さをk, M, w, ro, n, のう ち必要なものを用いて表せ。 (北海道大) Aにとっては遠心力が現れている。 (2) (1) の答えの形から自然に条件が決まってくる。 (5) (4) の結果からPの運動が確定する。 P the p LECTURE (1) 遠心力と弾性力のつり合いより Mrow²=k(ro-l ... (2)>0より kl Yo= k-Mw² k-Mw² > 0 k w√ M 回転が速過ぎると(ωが大き過ぎると),弾 性力より遠心力がまさり つり合う位置がな くなってしまう。 (3) ばねの伸びは -l と表せるから Ma=Mrw²-k(r-1) (4) 上式に r = ro+x を代入すると ( 38 単振動 •mmmm 自然長 遠心力がかかるから, | ばねは伸びているはず。 ①を用いた 115 遠心力 Mをmと書いてい ないだろうか? 物体上から見たとき 向心 外から見たとき ▷じゃ Ma = M(ro+x)w² − k(ro+x-1) ) =Mxw²2-kx =-(k-Mω²)x ......2 ∴. L=k-Mo² (2)で求めた条件よりLは正の定数であり,②はPがx=0(力のつり合 い位置)を中心として単振動をすることを示している。 (5) ②から単振動の周期Tは M 最大の速さは、 公式 Vmax = Aw より [ro を代入する) より速い Queeeeeeeeeeee- 0 Yo T=2nvk-M²2 2π√ とする誤りが多い。ばね振り子の周期 k が不変となるのは、ばねの力のほかに一定の力 がかかる場合のことである。 遠心力は半径と ともに変わる力である。 ばねの長さが最小となるのは, 内側の端の位置にくるときだから、端か ら端までの時間は半周期。よって, M T= √k-M₁² 振幅Aは上図より, A = n-ro よって, ばねの長さの最小値は ro-A=2ro-n # A 中心 k-Mos² A² = (n-1)√² M

回答募集中 回答数: 0